1-7hit |
Minoru OHMIKAWA Hideaki TAKAGI Sang-Yong KIM
We propose a new call admission control (CAC) scheme for voice calls in cellular mobile communication networks. It is assumed that the rejection of a hand-off call is less desirable than that of a new call, for a hand-off call loss would cause a severe mental pain to a user. We consider the pains of rejecting new and hand-off calls as different costs. The key idea of our CAC is to restrict the admission of new calls in order to minimize the total expected costs per unit time over the long term. An optimal policy is derived from a semi-Markov decision process in which the intervals between successive decision epochs are exponentially distributed. Based on this optimal policy, we calculate the steady state probability for the number of established voice connections in a cell. We then evaluate the probability of blocking new calls and the probability of forced termination of hand-off calls. In the numerical experiments, it is found that the forced termination probability of hand-off calls is reduced significantly by our CAC scheme at the slight expense of the blocking probability of new calls and the channel utilization. Comparison with the static guard channel scheme is made.
An appropriate call admission control in the next generation wireless networks is expected to make efficient use of scarce wireless resource and improve quality-of-service, while supporting multimedia services. On one hand, blocking handoff calls is normally more annoying than blocking new calls. On the other hand, blocking new calls reduces resource utilization. More importantly, handoff call arrival rate depends strongly on call holding time. A novel Call-Holding-Time-Based Random Early Blocking (CHTREB) scheme is proposed to achieve the aforesaid goals in a two-tier cellular voice/data network. With CHTREB, new calls are accepted according to some acceptance probability taking into account the call hloding time difference between voice and data calls. An iterative algorithm is developed to calculate performance measures of interest, i.e., new call blocking probability and forced termination probability. First, simulation results are shown to verify analytical results. Then, numerical results are presented to show the robustness of CHTREB. It is found that CHTREB outperforms TR and CHTREB-FAP under both stationary and nonstationary traffic scenarios. Last but not least, the studied 2-tier system is compared with 1-tier counterpart. It is shown that 2-tier system performs better in terms of average number of handoffs per data call.
There are more and more information services provided on the wireless networks. Due to long network delay of wireless links, transactions will be long-lived transactions. In such a situation, the occurrence of handoff is inevitable, and thus a wireless link held by a mobile unit crossing cell boundaries might be forced to terminate. It is undesirable that an active transaction is forced to terminate. A queueing scheme has been proposed to solve the problem of forced termination of transactions in our previous research. However, when 2PL protocol is employed, suspending an active transaction will elongate the lock holding time and thus degrade the system performance. In this paper, we propose two guard channel schemes (GCS), static and dynamic, to reduce the probability of forced termination of transactions. In dynamic GCS, the number of channels reserved in a base station is dynamically assigned according to the number of transaction calls which may handoff to this cell while the number of guard channels is fixed in static GCS. An analytic model based on Markov chain is derived to evaluate the system performance. The correctness of this model is verified by simulation. The experimental results show that a significant improvement is achieved by using the dynamic GCS.
Hideaki TAKAGI Ken-ichi SAKAMAKI Tohru MIYASHIRO
We propose and analyze a traffic model of a cellular radio communication network with an arbitrary cell connection and arbitrary probabilistic movement of mobiles between the cells. Our analytic model consists of birth-and-death processes for individual cells connected by the numerical adjustment of hand-off rates. This approximation is validated by simulation. We evaluate the probabilities of the immediate loss, the completion, and the forced termination during hand-off for an arbitrary call in the network. Our numerical examples reveal the cases in which the increase in the generation rate of new calls results in the increase in the loss probability without affecting much the probability of forced termination in a limited service area.
Lan CHEN Hidekazu MURATA Susumu YOSHIDA Shouichi HIROSE
In this paper, the performance of dynamic channel assignment for cellular systems with an array antenna is evaluated assuming realistic beamformer. A new dynamic channel assignment algorithm is proposed to improve the performance by forming a directional beam pattern to cancel stronger co-channel interference with higher priority. Performance comparison is carried out by computer simulations. Conventional algorithm shows 2.7 fold capacity increase compared with an omni antenna system, whereas proposed algorithm shows around 3.3 fold capacity increase, at the point of 3 percent blocking probability. The simulation results also denote that a shorter reuse distance can be achieved by the proposed algorithm, which indicates a more efficient utilization of channel resource.
Lan CHEN Susumu YOSHIDA Hidekazu MURATA Shouichi HIROSE
Personal communication systems are increasingly required to accommodate not only voice traffic, but also various types of data traffic. Generally speaking, voice traffic is symmetric between uplink and downlink, while data traffic can be highly asymmetric. It is therefore inefficient to accommodate data in a conventional TDMA/TDD system with fixed TDD boundary. In this paper, focusing on the continuous data traffic which requires multi-slots in a circuit based TDMA/TDD system, an algorithm is proposed in which the TDD boundary are moved adaptively to accommodate data traffic efficiently. Comparing with the boundary-fixed conventional algorithm, computer simulations confirm that the proposed algorithm has superior performance in the excessive transmission delay of data while maintaining the performance of voice. The intercell interference between mobiles due to different TDD boundaries is also confirmed to be negligible. Moreover, almost the similar performance improvements of the proposed algorithm are confirmed for two different average message sizes of data calls.
Lan CHEN Susumu YOSHIDA Hidekazu MURATA
It is highly desirable to develop an efficient and flexible dynamic channel assignment algorithm in order to realize an integrated traffic TDMA mobile radio communication network. In this paper, an integrated traffic TDMA system is studied in which transmission of voice and data are assumed to occupy one and n time slots in each TDMA frame, respectively. In general, there are two types of channel (time slot) assignment algorithms: the partitioning algorithm and the sharing algorithm. However, they are not well-suited to the multimedia traffic consisting of various information sources that occupy different number of slots per frame. In this paper, assuming that voice is much more sensitive to transmission delay than data, an algorithm based on the sharing algorithm with flexible tima slot management scheme is proposed. Our method tries to vary the number of data slots adaptively so as to improve the quality of servive of voice calls and the system capacity. Computer simulations show the good performance of the proposed algorithm when compared to conventional channel assignment algorithms.