The search functionality is under construction.

Author Search Result

[Author] Lan CHEN(22hit)

1-20hit(22hit)

  • Fine-Grained Data Management for DRAM/SSD Hybrid Main Memory Architecture

    Liyu WANG  Qiang WANG  Lan CHEN  Xiaoran HAO  

     
    LETTER-Computer System

      Pubricized:
    2016/08/30
      Vol:
    E99-D No:12
      Page(s):
    3172-3176

    Many data-intensive applications need large memory to boost system performance. The expansion of DRAM is restricted by its high power consumption and price per bit. Flash as an existing technology of Non-Volatile Memory (NVM) can make up for the drawbacks of DRAM. In this paper, we propose a hybrid main memory architecture named SSDRAM that expands RAM with flash-based SSD. SSDRAM implements a runtime library to provide several transparent interfaces for applications. Unlike using SSD as system swap device which manages data at a page level, SSDRAM works at an application object granularity to boost the efficiency of accessing data on SSD. It provides a flexible memory partition and multi-mapping strategy to manage the physical memory by micro-pages. Experimental results with a number of data-intensive workloads show that SSDRAM can provide up to 3.3 times performance improvement over SSD-swap.

  • Calculating the Maximum Doppler Frequency from Autocorrelation Functions

    Bin SHENG  Pengcheng ZHU  Xiaohu YOU  Lan CHEN  

     
    LETTER-Antennas and Propagation

      Vol:
    E92-B No:10
      Page(s):
    3277-3279

    In this letter, Doppler spread estimation in different Doppler spectra is investigated and some efficient methods are proposed to calculate the maximum Doppler frequency from autocorrelation function easily.

  • Deep Learning-Based Massive MIMO CSI Acquisition for 5G Evolution and 6G

    Xin WANG  Xiaolin HOU  Lan CHEN  Yoshihisa KISHIYAMA  Takahiro ASAI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/06/15
      Vol:
    E105-B No:12
      Page(s):
    1559-1568

    Channel state information (CSI) acquisition at the transmitter side is a major challenge in massive MIMO systems for enabling high-efficiency transmissions. To address this issue, various CSI feedback schemes have been proposed, including limited feedback schemes with codebook-based vector quantization and explicit channel matrix feedback. Owing to the limitations of feedback channel capacity, a common issue in these schemes is the efficient representation of the CSI with a limited number of bits at the receiver side, and its accurate reconstruction based on the feedback bits from the receiver at the transmitter side. Recently, inspired by successful applications in many fields, deep learning (DL) technologies for CSI acquisition have received considerable research interest from both academia and industry. Considering the practical feedback mechanism of 5th generation (5G) New radio (NR) networks, we propose two implementation schemes for artificial intelligence for CSI (AI4CSI), the DL-based receiver and end-to-end design, respectively. The proposed AI4CSI schemes were evaluated in 5G NR networks in terms of spectrum efficiency (SE), feedback overhead, and computational complexity, and compared with legacy schemes. To demonstrate whether these schemes can be used in real-life scenarios, both the modeled-based channel data and practically measured channels were used in our investigations. When DL-based CSI acquisition is applied to the receiver only, which has little air interface impact, it provides approximately 25% SE gain at a moderate feedback overhead level. It is feasible to deploy it in current 5G networks during 5G evolutions. For the end-to-end DL-based CSI enhancements, the evaluations also demonstrated their additional performance gain on SE, which is 6%-26% compared with DL-based receivers and 33%-58% compared with legacy CSI schemes. Considering its large impact on air-interface design, it will be a candidate technology for 6th generation (6G) networks, in which an air interface designed by artificial intelligence can be used.

  • A Low-Complexity Sparse Channel Estimation Method for OFDM Systems

    Bin SHENG  Pengcheng ZHU  Xiaohu YOU  Lan CHEN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:8
      Page(s):
    2211-2214

    In this letter, we propose a low-complexity sparse channel estimation method for orthogonal frequency division multiplexing (OFDM) systems. The proposed method uses a discrete Fourier transform (DFT)-based technique for channel estimation and a novel sorted noise space discrimination technique to estimate the channel length and tap positions. Simulation results demonstrate that the reduction in signal space improves the channel estimation performance.

  • Research and Modeling on Performance Evaluation of IEEE 802.15.6

    Yali WANG  Lan CHEN  Chao LV  

     
    PAPER-Network

      Vol:
    E97-B No:11
      Page(s):
    2378-2385

    IEEE 802.15.6 provides PHY and MAC layer profiles for wearable and implanted Wireless Body Area Networks (WBANs). The critical requirements of QoS guarantee and ultra-low-power are severe challenges when implementing IEEE 802.15.6. In this paper, the key problem in IEEE 802.15.6 standard that “How to allocate EAP (Exclusive Access Phase)?” is solved for the first time: An analysis of network performance indicates that too much EAP allocation can not promote traffic performance obviously and effectually. However, since EAP allocation plays an important role in guaranteeing quality of service, a customized and quantitative EAP allocation solution is proposed. Simulation results show that the solution can obtain the optimal network performance. Furthermore, the estimated models of delay and energy are developed, which help to design the WBAN according to application requirements and analyze the network performance according to the traffic characteristics. The models are simple, effective, and relatively accurate. Results show that the models have approximated mean and the correlation coefficient is greater than 0.95 compared with the simulations of IEEE 802.15.6 using NS2 platform. The work of this paper can solve crucial practical problems in using IEEE 802.15.6, and will propel WBANs applications widely.

  • LAB-LRU: A Life-Aware Buffer Management Algorithm for NAND Flash Memory

    Liyu WANG  Lan CHEN  Xiaoran HAO  

     
    LETTER-Computer System

      Pubricized:
    2016/06/21
      Vol:
    E99-D No:10
      Page(s):
    2633-2637

    NAND flash memory has been widely used in storage systems. Aiming to design an efficient buffer policy for NAND flash memory, a life-aware buffer management algorithm named LAB-LRU is proposed, which manages the buffer by three LRU lists. A life value is defined for every page and the active pages with higher life value can stay longer in the buffer. The definition of life value considers the effect of access frequency, recency and the cost of flash read and write operations. A series of trace-driven simulations are carried out and the experimental results show that the proposed LAB-LRU algorithm outperforms the previous best-known algorithms significantly in terms of the buffer hit ratio, the numbers of flash write and read operations and overall runtime.

  • Unified 6G Waveform Design Based on DFT-s-OFDM Enhancements

    Juan LIU  Xiaolin HOU  Wenjia LIU  Lan CHEN  Yoshihisa KISHIYAMA  Takahiro ASAI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/12/05
      Vol:
    E106-B No:6
      Page(s):
    528-537

    To achieve the extreme high data rate and extreme coverage extension requirements of 6G wireless communication, new spectrum in sub-THz (100-300GHz) and non-terrestrial network (NTN) are two of the macro trends of 6G candidate technologies, respectively. However, non-linearity of power amplifiers (PA) is a critical challenge for both sub-THz and NTN. Therefore, high power efficiency (PE) or low peak to average power ratio (PAPR) waveform design becomes one of the most significant 6G research topics. Meanwhile, high spectral efficiency (SE) and low out-of-band emission (OOBE) are still important key performance indicators (KPIs) for 6G waveform design. Single-carrier waveform discrete Fourier transform spreading orthogonal frequency division multiplexing (DFT-s-OFDM) has achieved many research interests due to its high PE, and it has been supported in 5G New Radio (NR) when uplink coverage is limited. So DFT-s-OFDM can be regarded as a candidate waveform for 6G. Many enhancement schemes based on DFT-s-OFDM have been proposed, including null cyclic prefix (NCP)/unique word (UW), frequency-domain spectral shaping (FDSS), and time-domain compression and expansion (TD-CE), etc. However, there is no unified framework to be compatible with all the enhancement schemes. This paper firstly provides a general description of the 6G candidate waveforms based on DFT-s-OFDM enhancement. Secondly, the more flexible TD-CE supporting methods for unified non-orthogonal waveform (uNOW) are proposed and discussed. Thirdly, a unified waveform framework based on DFT-s-OFDM structure is proposed. By designing the pre-processing and post-processing modules before and after DFT in the unified waveform framework, the three technical methods (NCP/UW, FDSS, and TD-CE) can be integrated to improve three KPIs of DFT-s-OFDM simultaneously with high flexibility. Then the implementation complexity of the 6G candidate waveforms are analyzed and compared. Performance of different DFT-s-OFDM enhancement schemes is investigated by link level simulation, which reveals that uNOW can achieve the best PAPR performance among all the 6G candidate waveforms. When considering PA back-off, uNOW can achieve 124% throughput gain compared to traditional DFT-s-OFDM.

  • Access Probability Aware Cell Reselection for 3G Evolution

    Mingju LI  Lei DU  Lan CHEN  

     
    LETTER

      Vol:
    E92-B No:5
      Page(s):
    1825-1827

    In LTE, AC barring check is performed before RRC connection. In some cells with a low access probability, the UEs keep retrying access which results in higher connection failure and longer access delay. We therefore propose balancing the UEs by adjusting the cell reselection criteria based on the access probability, so that the UEs shall be more encouraged to reselect a cell with a higher access probability.

  • A Multi-Stage Hybrid Scheduler for Codebook-Based MU-MIMO System

    Jingxiu LIU  Xiaoming SHE  Lan CHEN  Hidekazu TAOKA  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:6
      Page(s):
    2303-2307

    In this paper, we propose a multi-stage hybrid scheduling scheme for codebook-based precoding systems, which provides a framework to apply different scheduling criterions at different scheduling stages for selecting user equipment (UEs). Numerical simulation results show that the proposed scheme effectively fills the performance gap between maximum carrier-to-interference (Max C/I) power ratio and Proportional Fairness (PF) methods, and provides an important means at the media access control (MAC) layer to lever between aggregate cellular throughput and geometry-specific per-user fairness, in order to meet the requirements of more precise quality of service (QoS) provision for future mobile communication systems.

  • Multi-Codebook Based Beamforming and Scheduling for MIMO-OFDM Systems with Limited Feedback

    Xiaoming SHE  Jingxiu LIU  Lan CHEN  Hidekazu TAOKA  Kenichi HIGUCHI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:11
      Page(s):
    3745-3748

    Transmit beamforming can exploit the spatial diversity afforded by multiple-input multiple-output (MIMO) systems with low complexity. To apply this technique in more practical systems with the constraint of limited feedback, codebook based beamforming and vector quantization technique have been considered in various papers. On the other hand, multi-user scheduling is able to achieve another form of diversity arising from the independence of fading for different users, however, has not been fully taken into account in existing codebook based beamforming schemes. In this letter, a multi-codebook based beamforming and scheduling scheme is proposed, which exploits both spatial diversity and multi-user diversity by switching the codebook for different resource blocks. Meanwhile, the multi-codebook design issue is addressed, the corresponding theoretical analysis is provided, and the performance gain of proposed scheme is simulated. Furthermore, the impacts of related parameters on the performance gain are also investigated.

  • Wireless QoS Resource Cooperation Management for CDMA Packet Mobile Communication Systems

    Lan CHEN  Hidetoshi KAYAMA  Narumi UMEDA  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:6
      Page(s):
    1927-1935

    The IMT-2000 service launched in 2001 in Japan is expected to popularize multimedia services such as videophone, visual mail, video, and music distribution. With the rapidly increasing demand for high-speed mobile multimedia and the need to support diversified requirements of users, wireless Quality of Service (QoS) resource management has become an important and challenging issue. In order to improve the system capacity and rate of satisfied users, in this paper, a novel wireless QoS resource management scheme is proposed to carry out radio resource cooperative control among base stations. Computer simulations indicate that the proposed QoS resource cooperative control exhibits superior performance over conventional ones, and that a higher rate of satisfied users is achieved.

  • A Dynamic Channel Assignment Algorithm for Voice and Data Integrated TDMA Mobile Radio

    Lan CHEN  Susumu YOSHIDA  Hidekazu MURATA  

     
    PAPER

      Vol:
    E80-A No:7
      Page(s):
    1204-1210

    It is highly desirable to develop an efficient and flexible dynamic channel assignment algorithm in order to realize an integrated traffic TDMA mobile radio communication network. In this paper, an integrated traffic TDMA system is studied in which transmission of voice and data are assumed to occupy one and n time slots in each TDMA frame, respectively. In general, there are two types of channel (time slot) assignment algorithms: the partitioning algorithm and the sharing algorithm. However, they are not well-suited to the multimedia traffic consisting of various information sources that occupy different number of slots per frame. In this paper, assuming that voice is much more sensitive to transmission delay than data, an algorithm based on the sharing algorithm with flexible tima slot management scheme is proposed. Our method tries to vary the number of data slots adaptively so as to improve the quality of servive of voice calls and the system capacity. Computer simulations show the good performance of the proposed algorithm when compared to conventional channel assignment algorithms.

  • Wireless QoS for High-Speed CDMA Packet Cellular Systems--With Radio-Condition-Aware Admission Control and Resource Allocation Reflected Multistage Scheduling--

    Narumi UMEDA  Lan CHEN  Hidetoshi KAYAMA  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E89-B No:3
      Page(s):
    886-894

    Supporting diversified rates for real-time communications will become possible and essential with the rapidly increasing transmission rates provided by the 4th generation (4G) mobile communication systems. In this paper, a novel wireless Quality of Service (QoS) scheme suitable for broadband CDMA packet cellular systems with adaptive modulation coding is proposed and its characteristics are described. The proposed QoS scheme comprises several control factors laid on the MAC and RRC layers, and can be harmonized with IP-QoS. Two important control factors are proposed: radio-condition-aware admission control and resource allocation reflected multistage scheduling. Computer simulations and testbed experiments indicate that by using the radio-condition-aware admission control, stable and guaranteed service can be provided to real-time users regardless of the interference and the variation in the location of the mobile station. Moreover, resource allocation reflected multistage scheduling maintains guaranteed rates for real-time users and provides high resource utilization efficiency for best-effort users. Consequently, by using the proposed wireless QoS scheme, it is possible to provide users with high quality and diversified real-time services, on a packet based radio network for enhanced 3G and beyond.

  • Dynamic Channel Assignment Algorithms with Adaptive Array Antennas in Cellular Systems

    Lan CHEN  Hidekazu MURATA  Susumu YOSHIDA  Shouichi HIROSE  

     
    PAPER

      Vol:
    E82-A No:7
      Page(s):
    1202-1209

    In this paper, the performance of dynamic channel assignment for cellular systems with an array antenna is evaluated assuming realistic beamformer. A new dynamic channel assignment algorithm is proposed to improve the performance by forming a directional beam pattern to cancel stronger co-channel interference with higher priority. Performance comparison is carried out by computer simulations. Conventional algorithm shows 2.7 fold capacity increase compared with an omni antenna system, whereas proposed algorithm shows around 3.3 fold capacity increase, at the point of 3 percent blocking probability. The simulation results also denote that a shorter reuse distance can be achieved by the proposed algorithm, which indicates a more efficient utilization of channel resource.

  • Wireless QoS-Aware Resource Management for CDMA Packet Multimedia Cellular Radio

    Lan CHEN  Hidetoshi KAYAMA  Narumi UMEDA  Yasushi YAMAO  

     
    PAPER

      Vol:
    E86-A No:7
      Page(s):
    1576-1584

    The emerging multimedia applications for future mobile communication systems typically require highly diversified Quality of Service (QoS). However, due to the time and location dependent fluctuating nature of radio resources in the radio link, it is very difficult to maintain a constant level of QoS with the current end-to-end QoS control only. Therefore, wireless-aware QoS is the key issue for achieving better end-end QoS. In this paper, a new wireless QoS scheme for a joint CDMA/NC-PRMA cellular system are proposed considering QoS prioritization mechanism, users' diversified requirements and the harmonization with IP-QoS. Two wireless QoS-aware resource allocation algorithms are proposed to support QoS prioritization while achieving high radio resource utilization. By introducing a set of new QoS resource request parameters (minimum, average and maximum requirements), the algorithms can assign radio resource in a more flexible way than the conventional fixed resource allocation. Computer simulations indicate that the proposed QoS algorithms exhibit superior performance with respect to packet dropping probability for realtime application users, and improve transmission rate for non-realtime application users, which evince the effectiveness of the proposed wireless QoS algorithms.

  • Improved Channel Estimation Based on Sorted GAIC for OFDM Systems in Sparse Multipath Channels

    Bin SHENG  Pengcheng ZHU  Xiaohu YOU  Lan CHEN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:1
      Page(s):
    192-194

    In this letter, we propose a novel sparse channel estimation method for orthogonal frequency division multiplexing (OFDM) systems. The proposed method uses a discrete Fourier transform (DFT)-based technique for channel estimation and a sorted generalized Akaike information criterion (GAIC) to estimate the channel length and tap positions. Simulation results demonstrate that an improved channel estimation performance is obtained due to the reduction of signal space.

  • Cross-Layering Optimization for Low Energy Consumption in Wireless Body Area Networks

    Yali WANG  Lan CHEN  Chao LYV  

     
    PAPER

      Vol:
    E97-B No:9
      Page(s):
    1808-1816

    Wireless body area networks (WBANs) have to work with low power and long lifetime to satisfy human biological safety requirements in e-health; therefore extremely low energy consumption is significant for WBANs. IEEE 802.15.6 standard has been published for wearable and implanted applications which provide communication technology requirements in WBANs. In this paper, the cross-layering optimization methodology is used to minimize the network energy consumption. Both the priority strategy and sleep mechanism in IEEE802.15.6 are considered. Macroscopic sleep model based on WBAN traffic priority and microscopic sleep model based on MAC structure are proposed. Then the network energy consumption optimization problem is solved by Lagrange dual method, the master problem are vertically decomposed into two sub problems in MAC and transport layers which are dealt with gradient method. Finally, a solution including self-adaption sleep mechanism and node rate controlling is proposed. The results of this paper indicate that the algorithm converges quickly and reduces the network energy consumption remarkably.

  • A Dynamic Timeslot Assignment Algorithm for Asymmetric Traffic in Multimedia TDMA/TDD Mobile Radio

    Lan CHEN  Susumu YOSHIDA  Hidekazu MURATA  Shouichi HIROSE  

     
    PAPER

      Vol:
    E81-A No:7
      Page(s):
    1358-1366

    Personal communication systems are increasingly required to accommodate not only voice traffic, but also various types of data traffic. Generally speaking, voice traffic is symmetric between uplink and downlink, while data traffic can be highly asymmetric. It is therefore inefficient to accommodate data in a conventional TDMA/TDD system with fixed TDD boundary. In this paper, focusing on the continuous data traffic which requires multi-slots in a circuit based TDMA/TDD system, an algorithm is proposed in which the TDD boundary are moved adaptively to accommodate data traffic efficiently. Comparing with the boundary-fixed conventional algorithm, computer simulations confirm that the proposed algorithm has superior performance in the excessive transmission delay of data while maintaining the performance of voice. The intercell interference between mobiles due to different TDD boundaries is also confirmed to be negligible. Moreover, almost the similar performance improvements of the proposed algorithm are confirmed for two different average message sizes of data calls.

  • Non-Orthogonal Physical Layer (NOPHY) Design towards 5G Evolution and 6G

    Xiaolin HOU  Wenjia LIU  Juan LIU  Xin WANG  Lan CHEN  Yoshihisa KISHIYAMA  Takahiro ASAI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/04/26
      Vol:
    E105-B No:11
      Page(s):
    1444-1457

    5G has achieved large-scale commercialization across the world and the global 6G research and development is accelerating. To support more new use cases, 6G mobile communication systems should satisfy extreme performance requirements far beyond 5G. The physical layer key technologies are the basis of the evolution of mobile communication systems of each generation, among which three key technologies, i.e., duplex, waveform and multiple access, are the iconic characteristics of mobile communication systems of each generation. In this paper, we systematically review the development history and trend of the three key technologies and define the Non-Orthogonal Physical Layer (NOPHY) concept for 6G, including Non-Orthogonal Duplex (NOD), Non-Orthogonal Multiple Access (NOMA) and Non-Orthogonal Waveform (NOW). Firstly, we analyze the necessity and feasibility of NOPHY from the perspective of capacity gain and implementation complexity. Then we discuss the recent progress of NOD, NOMA and NOW, and highlight several candidate technologies and their potential performance gain. Finally, combined with the new trend of 6G, we put forward a unified physical layer design based on NOPHY that well balances performance against flexibility, and point out the possible direction for the research and development of 6G physical layer key technologies.

  • A Novel Resource Allocation Method for DFT-s-OFDMA Systems

    Bin SHENG  Pengcheng ZHU  Xiaohu YOU  Lan CHEN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:4
      Page(s):
    1448-1450

    In this letter, a novel resource allocation method is proposed for Discrete Fourier Transform Spread Orthogonal Frequency Division Multiple Access (DFT-s-OFDMA) systems in Long Term Evolution (LTE). The proposed method is developed based on a minimal metric loss criterion and performs better than the commonly used Recursive Maximum Expansion (RME) method.

1-20hit(22hit)