The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Xiaohu YOU(32hit)

1-20hit(32hit)

  • A Novel Bi-directional Relaying Scheme with Low Complexity

    Feng HU  Hua ZHANG  Xiaohu YOU  

     
    LETTER-Terrestrial Radio Communications

      Vol:
    E93-B No:2
      Page(s):
    423-427

    In this paper we investigate a low complexity channel estimation and data transmission scheme for bi-directional relaying networks. We also propose a semi-orthogonal pilot structure for channel estimation to increase the efficiency of data transmission between the Base Station (BS) and Mobile Station (MS) via a fixed Relay Node (RN).

  • A Power Adaptation Method for Finite Length Block Fading Channel with Multiple Antennas

    Chen JI  Jiang WU  Dongming WANG  Xiaohu YOU  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E96-B No:12
      Page(s):
    3041-3049

    We analyze a power adaptation method to maximize the achievable rate under the finite block length regime, for MIMO block fading channel with channel state information available at both the transmitter and receiver side. We find a convex approximation to the lower bound of the achievable rate, and it leads to a simple power and rate adaptation method. We show that the method achieves near optimal channel rate under the finite block length regime. Compared to the classical waterfilling method, the proposed method can further improve achievable rate especially for short block lengths.

  • An Accurate Scheme for Channel Parameter Estimation in Mobile Propagations

    Jingyu HUA  Limin MENG  Gang LI  Dongming WANG  Xiaohu YOU  

     
    LETTER

      Vol:
    E92-C No:1
      Page(s):
    116-120

    In this letter, we first investigate the bias of Doppler shift estimator based on autocorrelation function (ACF). Then we derive a signal-to-noise ratio (SNR) independent condition for Doppler shift estimation and achieve this condition by a adaptive process. Moreover, we present theoretical analysis about the convergency of our adaptive Doppler shift estimator, and derive a close-form expression for its mean square error (MSE). We verify the proposed estimator by computer simulation, the results of which are in agreement with the analysis, i.e., the proposed method achieves a good SNR-independent performance in a wide range of velocities and SNRs.

  • SINR Degradation due to Carrier Frequency Offset in OFDM Based Amplify-and-Forward Relay Systems

    Yanxiang JIANG  Yanxin HU  Xiaohu YOU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:1
      Page(s):
    317-320

    In this letter, signal to interference plus noise ratio (SINR) performance is analyzed for orthogonal frequency division multiplexing (OFDM) based amplify-and-forward (AF) relay systems in the presence of carrier frequency offset (CFO) for fading channels. The SINR expression is derived under the one-relay-node scenario, and is further extended to the multiple-relay-node scenario. Analytical results show that the SINR is quite sensitive to CFO and the sensitivity of the SINR to CFO is mainly determined by the gain factor and the different power of the direct link channel and relay link channel.

  • Calculating the Maximum Doppler Frequency from Autocorrelation Functions

    Bin SHENG  Pengcheng ZHU  Xiaohu YOU  Lan CHEN  

     
    LETTER-Antennas and Propagation

      Vol:
    E92-B No:10
      Page(s):
    3277-3279

    In this letter, Doppler spread estimation in different Doppler spectra is investigated and some efficient methods are proposed to calculate the maximum Doppler frequency from autocorrelation function easily.

  • A Low-Complexity Sparse Channel Estimation Method for OFDM Systems

    Bin SHENG  Pengcheng ZHU  Xiaohu YOU  Lan CHEN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:8
      Page(s):
    2211-2214

    In this letter, we propose a low-complexity sparse channel estimation method for orthogonal frequency division multiplexing (OFDM) systems. The proposed method uses a discrete Fourier transform (DFT)-based technique for channel estimation and a novel sorted noise space discrimination technique to estimate the channel length and tap positions. Simulation results demonstrate that the reduction in signal space improves the channel estimation performance.

  • Joint Blind Estimation of Channel Length and Noise Variance in OFDM Systems

    Bin SHENG  Pengcheng ZHU  Xiaohu YOU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:12
      Page(s):
    3614-3617

    The information of channel impulse response (CIR) length and noise variance play an important role in blind identification and equalization of wireless multipath channels. In orthogonal frequency division multiplexing (OFDM) systems, multipath fading channels introduce interference between adjacent symbols which can be prevented by inserting a cyclic prefix (CP) before each symbol. In this letter, we find that the interference power in the cyclic prefix (CP) interval and its variation can be used to estimate the CIR length and noise variance jointly and blindly.

  • Multiple Random Beams Selection Exploiting Chordal Distances

    Lan TANG  Pengcheng ZHU  Xiaohu YOU  Yan WANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:11
      Page(s):
    3722-3726

    We consider a time-division multiple access (TDMA) transmission scheme in MIMO broadcast channels. To cope with the fairness issue in heterogeneous networks with slow fading, an opportunistic scheduling algorithm based on the channel eigen-direction is investigated. In the system with sparse users, the mismatch between a random beamforming vector and the principle eigenvector of the channel incurs a throughput penalty. To reduce such a throughput loss, a multiple random beams selection (MRBS) scheme exploiting chordal distances is proposed. Two feedback schemes (unquantized or quantized chordal distances) are considered. The closed-form throughput expressions of the proposed schemes are derived.

  • A Novel Precoding Design for MIMO Broadcast Channel

    Huan SUN  Xiaohu YOU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:4
      Page(s):
    1223-1226

    The problem of joint orthogonal precoding and user scheduling in a multi-user multi-input multi-output (MU-MIMO) downlink system is considered. Based on the theoretics of subspace and vector projection, a novel orthogonal precoding matrix is designed to achieve high sum-rate capacity with low to moderate number of active users and in low SNR regions. With respect to sum-rate capacity, numerical simulations show that the proposed algorithm outperforms the zero-forcing beam-forming (ZFBF) and linear orthogonal beam-forming (OLBF).

  • Impact of Feedback Error on Transmit Beamforming with Finite Rate Feedback

    Pengcheng ZHU  Lan TANG  Yan WANG  Xiaohu YOU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:9
      Page(s):
    2600-2604

    In this letter, we study the impact of feedback error on transmit beamforming systems with finite rate feedback. The feedback channel is modeled as a uniform symmetric channel. The outage probability, bit error rate (BER), diversity gain, and array gain formulas are given. Both analytical and simulation results show that feedback error with small probability will make the system behave badly at high signal-to-noise ratios (SNR).

  • Location and History Information Aided Efficient Initial Access Scheme for High-Speed Railway Communications

    Chang SUN  Xiaoyu SUN  Jiamin LI  Pengcheng ZHU  Dongming WANG  Xiaohu YOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/09/14
      Vol:
    E107-B No:1
      Page(s):
    214-222

    The application of millimeter wave (mmWave) directional transmission technology in high-speed railway (HSR) scenarios helps to achieve the goal of multiple gigabit data rates with low latency. However, due to the high mobility of trains, the traditional initial access (IA) scheme with high time consumption is difficult to guarantee the effectiveness of the beam alignment. In addition, the high path loss at the coverage edge of the millimeter wave remote radio unit (mmW-RRU) will also bring great challenges to the stability of IA performance. Fortunately, the train trajectory in HSR scenarios is periodic and regular. Moreover, the cell-free network helps to improve the system coverage performance. Based on these observations, this paper proposes an efficient IA scheme based on location and history information in cell-free networks, where the train can flexibly select a set of mmW-RRUs according to the received signal quality. We specifically analyze the collaborative IA process based on the exhaustive search and based on location and history information, derive expressions for IA success probability and delay, and perform the numerical analysis. The results show that the proposed scheme can significantly reduce the IA delay and effectively improve the stability of IA success probability.

  • Joint Estimation of Doppler Spread and Carrier Frequency Offset for OFDM Systems

    Bin SHENG  Xiaohu YOU  

     
    LETTER

      Vol:
    E88-A No:11
      Page(s):
    3134-3136

    In this letter, a joint estimation algorithm of Doppler spread and frequency offset for OFDM systems in Rayleigh fading channels is proposed based on the autocorrelation function between the last part of the received OFDM signal and its copy in guard interval. It is shown by computer simulations that the proposed algorithm performs well for different Doppler spread values and carrier frequency offsets.

  • Optimal Routing Strategy in Multi-Hop Relaying Networks

    Feng HU  Wei LI  Hua ZHANG  Matti LATVA-AHO  Xiaohu YOU  

     
    LETTER-Network

      Vol:
    E94-B No:8
      Page(s):
    2378-2381

    Reducing the energy consumption of wireless communication systems with new technologies and solutions continues to be an important concern in developing future standards. In this paper, we study the routing strategies in multi-hop relaying networks. For a 2-way assignment routing method, an efficient feedback scheme is presented to minimize the power consumption over the whole system. Compared with the full channel information in traditional feedback scheme, only the backward accumulated feedback metrics are required. If the proposed routing calculation is used, there is no performance loss. When the number of the hops and the relays is large, the new scheme achieves a significant feedback overhead reduction. Moreover, we show a proof for the optimality of the presented routing strategy based on mathematical induction.

  • Impact of a Novel SNR Estimation Method on Adaptive OFDM System Performance in Slow Rayleigh Fading Channels

    Xiaodong XU  Ya JING  Xiaohu YOU  Junhui ZHAO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:6
      Page(s):
    1947-1950

    In this letter, we propose an FFT-based SNR estimation method for wireless OFDM systems, and analyze the impact of the proposed SNR estimation method on adaptive OFDM performance in slow Rayleigh fading channels. Numerical and simulation results show that the proposed method is effective and feasible for adaptive modulation in slow Rayleigh fading channels.

  • A Novel RMS Delay Spread Estimation for Wireless OFDM Systems

    Xiaodong XU  Ya JING  Xiaohu YOU  Junhui ZHAO  

     
    PAPER-Coding Theory

      Vol:
    E89-A No:10
      Page(s):
    2558-2565

    Multipath search based instantaneous root-mean-squared (RMS) delay spread (RDS) estimators mainly depend on path detection or multipath search. This paper proposes a novel method for multipath search through Minimum Descriptive Length (MDL) criterion, and hence a novel instantaneous RDS estimation method for wireless OFDM systems. compared with the conventional multipath search based instantaneous RDS estimators, the proposed estimator doesn't need any a priori information about the noise variance and the channel power delay profile (PDP) while the performance is improved. Simulation results demonstrate that the proposed estimator is also insensitive to the variance of SNR and robust against the frequency selectivity, as well as the vehicle speed.

  • An Equalization Technique for OFDM Systems in Fast-Fading Multipath Channels at Low SNR

    Bin SHENG  Yuying ZHOU  Xiaohu YOU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:2
      Page(s):
    618-620

    In this letter, a novel channel estimation method is proposed for frequency-domain equalization of OFDM systems in fast fading multipath channels. It is shown by computer simulations that the proposed method can not only estimate the channel impulse response (CIR) accurately but also achieve lower BER than conventional method at low signal-to-noise ratio (SNR).

  • RAKE-SOVA Equalization for Multi-Code CDMA System with Low Spreading Factor

    Junhui ZHAO  Dongming WANG  Xiaohu YOU  Yun Hee KIM  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:5
      Page(s):
    2087-2092

    In CDMA system, the RAKE receiver is commonly used to attain diversity gain by taking advantage of the good correlation properties of the spreading codes. However, at low spreading gains the good correlation properties of the spreading codes are lost and the RAKE receiver performance is severely degraded by intersymbol interference (ISI) due to the interpath interference (IPI). In case of multi-code CDMA system, there are exist multi-code interference (MCI). In order to suppress ISI and MCI, a novel receiver based on soft-output viterbi algorithm (SOVA) equalization is proposed in this paper. The SOVA equalization is applied to symbol sequences after RAKE combining and MCI cancellation to effectively eliminate the ISI during transmission of high rate data in wideband DS-CDMA systems. Simulation results show that the proposed RAKE-SOVA receiver significantly outperform the traditional RAKE and RAKE-VA receivers.

  • Sum-Rate Evaluation of Multi-User MIMO-Relay Channel

    Huan SUN  Sheng MENG  Yan WANG  Xiaohu YOU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:2
      Page(s):
    683-686

    In this paper, the multi-user multiple-input multiple-output (MU-MIMO) relay channel is investigated, where the source node provides multi-beams to multi-users via a multi-antenna relay node. In this scenario, linear processing matrix at the relay node is designed around block diagonal (BD) scheme to improve the system sum-rate. Compared with the traditional linear processing matrix with zero-forcing (ZF) scheme at the relay node, the proposed matrix based on BD scheme can not only eliminate the multi-user interference to the same extent as the ZF scheme, but also realize optimal power allocation at the relay node. Numerical simulations demonstrate the BD scheme outperforms the ZF scheme and can significantly improve the sum-rate performance.

  • An Enhanced Doppler Spread Estimation Method for OFDM Systems

    Bin SHENG  Pengcheng ZHU  Xiaohu YOU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:12
      Page(s):
    3911-3914

    In OFDM systems, the correlation of cyclic prefix (CP) with its corresponding part at the end of the symbol can be used to estimate the maximum Doppler spread. However, the estimation accuracy of this CP based method is seriously affected by the inter-symbol interference (ISI) generated in the multipath channel. In this letter, we propose an enhanced CP based method which is immune to the ISI and can hence obtain an unbiased estimate of the auto-correlation function in multipath channels.

  • An Improved Scheme for Channel Parameter Estimation in Mobile Communication Systems

    Jingyu HUA  Xiaohu YOU  Dongming WANG  

     
    PAPER-Mobile Communication

      Vol:
    E88-C No:12
      Page(s):
    2325-2329

    In [1], an algorithm based on phase variations of received pilot symbols was proposed to estimate one of the most important channel parameters, maximum Doppler shift, fd. However, AWGN (Additive white gauss noise) will cause large estimation error in some cases. In order to analyze the influence of noise, we extended the phase probability density function (pdf) in [1] to the scenario with both fading and AWGN, then the estimation error is characterized in closed-form expression. By this error expression, we found that power control will affect the estimator of [1] and we proposed a modification method based on SNR estimation to obtain accurate Doppler shift estimation in moderate low SNRs (signal-to-noise ratio). Simulation results show high accuracy in wide range of velocities and SNRs.

1-20hit(32hit)