1-6hit |
Lan CHEN Hidetoshi KAYAMA Narumi UMEDA
The IMT-2000 service launched in 2001 in Japan is expected to popularize multimedia services such as videophone, visual mail, video, and music distribution. With the rapidly increasing demand for high-speed mobile multimedia and the need to support diversified requirements of users, wireless Quality of Service (QoS) resource management has become an important and challenging issue. In order to improve the system capacity and rate of satisfied users, in this paper, a novel wireless QoS resource management scheme is proposed to carry out radio resource cooperative control among base stations. Computer simulations indicate that the proposed QoS resource cooperative control exhibits superior performance over conventional ones, and that a higher rate of satisfied users is achieved.
Masayuki MOTEGI Hidetoshi KAYAMA Narumi UMEDA
Adaptive Battery Conservation Management (ABCM), an effective form of power conservation for mobile terminals in an always-connected environment, was proposed and evaluated in a previous published work. The ABCM method employs three states: active, dormant, and the Battery Saving Mode (BSM). The BSM is defined as a battery-saving state; in the BSM, the mobile terminal saves power by intermittently receiving paging notifications via a paging channel between the packet bursts of a session. Two control parameters, the sleep-timer and paging interval, are set up according to packet class and are the keys to the performance of a system with this method. In real-time communications, a long sleep-timer and short paging interval are selected to minimize buffering delay. In non-real-time communications, on the other hand, a short sleep-timer and long paging interval are chosen to reduce power consumption by the mobile terminal. Our previous evaluation showed that the method is effective as a means for power conservation in non-real-time communications. In real-time communications, on the other hand, the ABCM method provides shorter buffering delays and the same battery-conservation performance as the conventional method. To further improve the ABCM method's performance, we now propose an enhanced ABCM method that employs multiple BSM sub-modes, each of which has a different paging interval. As dormant periods become longer, the mobile terminal makes transition to successive sub-modes, each of which has a longer interval than the previous one. In this paper, we evaluate the battery conservation effect of the ABCM method through theoretical analysis and computer simulation. Numerical evaluation indicates that the ABCM method will be suitable for the broadband multimedia packet-radio systems of the future.
Narumi UMEDA Lan CHEN Hidetoshi KAYAMA
Supporting diversified rates for real-time communications will become possible and essential with the rapidly increasing transmission rates provided by the 4th generation (4G) mobile communication systems. In this paper, a novel wireless Quality of Service (QoS) scheme suitable for broadband CDMA packet cellular systems with adaptive modulation coding is proposed and its characteristics are described. The proposed QoS scheme comprises several control factors laid on the MAC and RRC layers, and can be harmonized with IP-QoS. Two important control factors are proposed: radio-condition-aware admission control and resource allocation reflected multistage scheduling. Computer simulations and testbed experiments indicate that by using the radio-condition-aware admission control, stable and guaranteed service can be provided to real-time users regardless of the interference and the variation in the location of the mobile station. Moreover, resource allocation reflected multistage scheduling maintains guaranteed rates for real-time users and provides high resource utilization efficiency for best-effort users. Consequently, by using the proposed wireless QoS scheme, it is possible to provide users with high quality and diversified real-time services, on a packet based radio network for enhanced 3G and beyond.
Lan CHEN Hidetoshi KAYAMA Narumi UMEDA Yasushi YAMAO
The emerging multimedia applications for future mobile communication systems typically require highly diversified Quality of Service (QoS). However, due to the time and location dependent fluctuating nature of radio resources in the radio link, it is very difficult to maintain a constant level of QoS with the current end-to-end QoS control only. Therefore, wireless-aware QoS is the key issue for achieving better end-end QoS. In this paper, a new wireless QoS scheme for a joint CDMA/NC-PRMA cellular system are proposed considering QoS prioritization mechanism, users' diversified requirements and the harmonization with IP-QoS. Two wireless QoS-aware resource allocation algorithms are proposed to support QoS prioritization while achieving high radio resource utilization. By introducing a set of new QoS resource request parameters (minimum, average and maximum requirements), the algorithms can assign radio resource in a more flexible way than the conventional fixed resource allocation. Computer simulations indicate that the proposed QoS algorithms exhibit superior performance with respect to packet dropping probability for realtime application users, and improve transmission rate for non-realtime application users, which evince the effectiveness of the proposed wireless QoS algorithms.
Atsushi FUJIWARA Shinji TAKEDA Hitoshi YOSHINO Narumi UMEDA
A multihop connection scheme, where one or more mobile terminals relay transmission signals using the same access scheme between an end user terminal and its destination base station, is a promising approach to overcome reduction in cell size caused by high bit-rate data transmission. In a general radio communication system, the coverage area and system throughput are closely interrelated. In this paper, the performance of a multihop cellular network employing a CDMA access scheme, which is a promising candidate for beyond the third generation, is studied in terms of the coverage area and system throughput by conducting a link level simulation. The results show that a multihop connection expands the coverage area, especially in the case of light traffic, and also has an advantage in system throughput.
Heng QIU Hidetoshi KAYAMA Narumi UMEDA
We aim to establish a highly efficient transmitting power control (TPC) scheme suitable for the reverse link of high-speed CDMA packet communication systems. Reservation-based access is assumed to be used for packet transmission in the reverse link. First, we describe a hybrid TPC that we created to cope with average interference changes. The target receiving power in the hybrid TPC is set according to the interference averaged over a comparatively long period of time. We show, using experiments on our high-speed packet communication experimental system, that hybrid TPC can effectively reduce transmission power consumption and PER compared with basic receiving power based TPC. Furthermore, we need to change the transmitting power according to the instantaneous interference to cope with instantaneous interference changes slot by slot. However, in a high-speed packet communication system, the interference level can change dramatically in a very short period of time. The TPC of cdma2000 or W-CDMA cannot efficiently cope with rapidly and greatly changing interference levels. Therefore, we created another two novel TPCs. Interference is divided in these TPCs into intra-cell and inter-cell interference. The supposed inter-cell interference level is changed according to the change in the probability distribution of the inter-cell interference, and the necessary transmitting power for a packet is calculated based on intra-cell allocation information and the supposed inter-cell interference level. Computer simulations show that, with the proposed TPCs, throughput can be increased by more than 200% compared with the type of TPC used in cdma2000 or W-CDMA, and the transmitting power consumption in a mobile host (MH) can also be vastly reduced.