The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] forward problem(1hit)

1-1hit
  • The Effects of Inhomogeneities on MCG forward Solution

    Jiange G. CHEN  Noboru NIKI  Yoon-Myung KANG  Yutaka NAKAYA  Hiromu NISHITANI  

     
    PAPER-Medical Engineering

      Vol:
    E83-D No:8
      Page(s):
    1687-1697

    The aim of this study was to quantify the effects of inhomogeneities on magnetocardiography (MCG) forward solutions. It can serve to guide the selection of inhomogeneities to include in any geometric model used to compute magnetocardiographics fields. A numerical model of a human torso was used which construction included geometry for major anatomical structures such as subcutaneous fat, skeletal muscle, lungs, major arteries and veins, and the bones. Simulations were done with a single current dipole placed at different sites of heart. The boundary element method (BEM) was utilized for numerical treatment of magnetic field calculations. Comparisons of the effects of different conductivity on MCG forward solution followed one of two basic schemes: 1) consider the difference between the magnetic fields of the homogeneous torso model and the same model with one inhomogeneity of a single organ or tissue added; 2) consider the difference between the magnetic fields of the full inhomogeneous model and the same model with one inhomogeneity of individual organ or tissue removed. When single inhomogeneities were added to an otherwise homogeneous model, the skeletal muscle, the right lung, the both lungs and the left lung had larger average effects (15.9, 15.1, 14.9, 14.4% relative error (RE), respectively) than the other inhomogeneities tested. When single inhomogeneities were removed from an otherwise full inhomogeneneous model, the both lungs, the left lung, and the skeletal muscle and the right lung had larger effects (17.3, 14.9, 14.3, 14.2% relative error (RE) respectively) than other inhomogeneities tested. The results of this study suggested that accurate representation of tissue inhomogeneity has a significant effect on the accuracy of the MCG forward solution. Our results showed that the inclusion of the boundaries also had effects on the topology of the magnetic fields and on the MCG inverse solution accuracy.