The search functionality is under construction.

The search functionality is under construction.

The aim of this study was to quantify the effects of inhomogeneities on magnetocardiography (MCG) forward solutions. It can serve to guide the selection of inhomogeneities to include in any geometric model used to compute magnetocardiographics fields. A numerical model of a human torso was used which construction included geometry for major anatomical structures such as subcutaneous fat, skeletal muscle, lungs, major arteries and veins, and the bones. Simulations were done with a single current dipole placed at different sites of heart. The boundary element method (BEM) was utilized for numerical treatment of magnetic field calculations. Comparisons of the effects of different conductivity on MCG forward solution followed one of two basic schemes: 1) consider the difference between the magnetic fields of the homogeneous torso model and the same model with one inhomogeneity of a single organ or tissue added; 2) consider the difference between the magnetic fields of the full inhomogeneous model and the same model with one inhomogeneity of individual organ or tissue removed. When single inhomogeneities were added to an otherwise homogeneous model, the skeletal muscle, the right lung, the both lungs and the left lung had larger average effects (15.9, 15.1, 14.9, 14.4% relative error (RE), respectively) than the other inhomogeneities tested. When single inhomogeneities were removed from an otherwise full inhomogeneneous model, the both lungs, the left lung, and the skeletal muscle and the right lung had larger effects (17.3, 14.9, 14.3, 14.2% relative error (RE) respectively) than other inhomogeneities tested. The results of this study suggested that accurate representation of tissue inhomogeneity has a significant effect on the accuracy of the MCG forward solution. Our results showed that the inclusion of the boundaries also had effects on the topology of the magnetic fields and on the MCG inverse solution accuracy.

- Publication
- IEICE TRANSACTIONS on Information Vol.E83-D No.8 pp.1687-1697

- Publication Date
- 2000/08/25

- Publicized

- Online ISSN

- DOI

- Type of Manuscript
- PAPER

- Category
- Medical Engineering

The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.

Copy

Jiange G. CHEN, Noboru NIKI, Yoon-Myung KANG, Yutaka NAKAYA, Hiromu NISHITANI, "The Effects of Inhomogeneities on MCG forward Solution" in IEICE TRANSACTIONS on Information,
vol. E83-D, no. 8, pp. 1687-1697, August 2000, doi: .

Abstract: The aim of this study was to quantify the effects of inhomogeneities on magnetocardiography (MCG) forward solutions. It can serve to guide the selection of inhomogeneities to include in any geometric model used to compute magnetocardiographics fields. A numerical model of a human torso was used which construction included geometry for major anatomical structures such as subcutaneous fat, skeletal muscle, lungs, major arteries and veins, and the bones. Simulations were done with a single current dipole placed at different sites of heart. The boundary element method (BEM) was utilized for numerical treatment of magnetic field calculations. Comparisons of the effects of different conductivity on MCG forward solution followed one of two basic schemes: 1) consider the difference between the magnetic fields of the homogeneous torso model and the same model with one inhomogeneity of a single organ or tissue added; 2) consider the difference between the magnetic fields of the full inhomogeneous model and the same model with one inhomogeneity of individual organ or tissue removed. When single inhomogeneities were added to an otherwise homogeneous model, the skeletal muscle, the right lung, the both lungs and the left lung had larger average effects (15.9, 15.1, 14.9, 14.4% relative error (RE), respectively) than the other inhomogeneities tested. When single inhomogeneities were removed from an otherwise full inhomogeneneous model, the both lungs, the left lung, and the skeletal muscle and the right lung had larger effects (17.3, 14.9, 14.3, 14.2% relative error (RE) respectively) than other inhomogeneities tested. The results of this study suggested that accurate representation of tissue inhomogeneity has a significant effect on the accuracy of the MCG forward solution. Our results showed that the inclusion of the boundaries also had effects on the topology of the magnetic fields and on the MCG inverse solution accuracy.

URL: https://global.ieice.org/en_transactions/information/10.1587/e83-d_8_1687/_p

Copy

@ARTICLE{e83-d_8_1687,

author={Jiange G. CHEN, Noboru NIKI, Yoon-Myung KANG, Yutaka NAKAYA, Hiromu NISHITANI, },

journal={IEICE TRANSACTIONS on Information},

title={The Effects of Inhomogeneities on MCG forward Solution},

year={2000},

volume={E83-D},

number={8},

pages={1687-1697},

abstract={The aim of this study was to quantify the effects of inhomogeneities on magnetocardiography (MCG) forward solutions. It can serve to guide the selection of inhomogeneities to include in any geometric model used to compute magnetocardiographics fields. A numerical model of a human torso was used which construction included geometry for major anatomical structures such as subcutaneous fat, skeletal muscle, lungs, major arteries and veins, and the bones. Simulations were done with a single current dipole placed at different sites of heart. The boundary element method (BEM) was utilized for numerical treatment of magnetic field calculations. Comparisons of the effects of different conductivity on MCG forward solution followed one of two basic schemes: 1) consider the difference between the magnetic fields of the homogeneous torso model and the same model with one inhomogeneity of a single organ or tissue added; 2) consider the difference between the magnetic fields of the full inhomogeneous model and the same model with one inhomogeneity of individual organ or tissue removed. When single inhomogeneities were added to an otherwise homogeneous model, the skeletal muscle, the right lung, the both lungs and the left lung had larger average effects (15.9, 15.1, 14.9, 14.4% relative error (RE), respectively) than the other inhomogeneities tested. When single inhomogeneities were removed from an otherwise full inhomogeneneous model, the both lungs, the left lung, and the skeletal muscle and the right lung had larger effects (17.3, 14.9, 14.3, 14.2% relative error (RE) respectively) than other inhomogeneities tested. The results of this study suggested that accurate representation of tissue inhomogeneity has a significant effect on the accuracy of the MCG forward solution. Our results showed that the inclusion of the boundaries also had effects on the topology of the magnetic fields and on the MCG inverse solution accuracy.},

keywords={},

doi={},

ISSN={},

month={August},}

Copy

TY - JOUR

TI - The Effects of Inhomogeneities on MCG forward Solution

T2 - IEICE TRANSACTIONS on Information

SP - 1687

EP - 1697

AU - Jiange G. CHEN

AU - Noboru NIKI

AU - Yoon-Myung KANG

AU - Yutaka NAKAYA

AU - Hiromu NISHITANI

PY - 2000

DO -

JO - IEICE TRANSACTIONS on Information

SN -

VL - E83-D

IS - 8

JA - IEICE TRANSACTIONS on Information

Y1 - August 2000

AB - The aim of this study was to quantify the effects of inhomogeneities on magnetocardiography (MCG) forward solutions. It can serve to guide the selection of inhomogeneities to include in any geometric model used to compute magnetocardiographics fields. A numerical model of a human torso was used which construction included geometry for major anatomical structures such as subcutaneous fat, skeletal muscle, lungs, major arteries and veins, and the bones. Simulations were done with a single current dipole placed at different sites of heart. The boundary element method (BEM) was utilized for numerical treatment of magnetic field calculations. Comparisons of the effects of different conductivity on MCG forward solution followed one of two basic schemes: 1) consider the difference between the magnetic fields of the homogeneous torso model and the same model with one inhomogeneity of a single organ or tissue added; 2) consider the difference between the magnetic fields of the full inhomogeneous model and the same model with one inhomogeneity of individual organ or tissue removed. When single inhomogeneities were added to an otherwise homogeneous model, the skeletal muscle, the right lung, the both lungs and the left lung had larger average effects (15.9, 15.1, 14.9, 14.4% relative error (RE), respectively) than the other inhomogeneities tested. When single inhomogeneities were removed from an otherwise full inhomogeneneous model, the both lungs, the left lung, and the skeletal muscle and the right lung had larger effects (17.3, 14.9, 14.3, 14.2% relative error (RE) respectively) than other inhomogeneities tested. The results of this study suggested that accurate representation of tissue inhomogeneity has a significant effect on the accuracy of the MCG forward solution. Our results showed that the inclusion of the boundaries also had effects on the topology of the magnetic fields and on the MCG inverse solution accuracy.

ER -