The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] fourth-order cumulants(2hit)

1-2hit
  • Blind Channel Equalization Using Fourth-Order Cumulants

    Soowhan HAN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E87-B No:10
      Page(s):
    3116-3124

    In this study, a fourth-order cumulants based iterative algorithm for blind channel equalization is introduced, which is robust with respect to the existence of heavy Gaussian noise in a channel and does not require the minimum phase characteristic of the channel. The transmitted signals at the receiver are over-sampled to ensure the channel described by a full-column rank matrix. It changes a single-input/single-output (SISO) finite-impulse response (FIR) channel to a single-input/multi-output (SIMO) channel. Based on the properties of the fourth-order cumulants of the over-sampled channel inputs, the iterative algorithm is derived to estimate the deconvolution matrix which makes the overall transfer matrix transparent, i.e., it can be reduced to the identity matrix by simple reordering and scaling. In simulation studies, both a closed-form and a stochastic version of the proposed algorithm are tested with three-ray multi-path channels, and their performances are compared with the methods based on conventional second-order statistics and higher-order statistics (HOS) as well. Relatively good results with fast convergence speed are achieved, even when the transmitted symbols are significantly corrupted with Gaussian noise.

  • An Algorithm for Improving the Signal to Noise Ratio of Noisy Complex Sinusoidal Signals Using Sum of Higher-Order Statistics

    Teruyuki HARA  Atsushi OKAMURA  Tetsuo KIRIMOTO  

     
    LETTER-Digital Signal Processing

      Vol:
    E81-A No:9
      Page(s):
    1955-1957

    This letter presents a new algorithm for improving the Signal to Noise Ratio (SNR) of complex sinusoidal signals contaminated by additive Gaussian noises using sum of Higher-Order Statistics (HOS). We conduct some computer simulations to show that the proposed algorithm can improve the SNR more than 7 dB compared with the conventional coherent integration when the SNR of the input signal is -10 dB.