The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] frequency shift(24hit)

1-20hit(24hit)

  • New Bounds on the Partial Hamming Correlation of Wide-Gap Frequency-Hopping Sequences with Frequency Shift

    Qianhui WEI  Zengqing LI  Hongyu HAN  Hanzhou WU  

     
    LETTER-Spread Spectrum Technologies and Applications

      Pubricized:
    2023/01/23
      Vol:
    E106-A No:8
      Page(s):
    1077-1080

    In frequency hopping communication, time delay and Doppler shift incur interference. With the escalating upgrading of complicated interference, in this paper, the time-frequency two-dimensional (TFTD) partial Hamming correlation (PHC) properties of wide-gap frequency-hopping sequences (WGFHSs) with frequency shift are discussed. A bound on the maximum TFTD partial Hamming auto-correlation (PHAC) and two bounds on the maximum TFTD PHC of WGFHSs are got. Li-Fan-Yang bounds are the particular cases of new bounds for frequency shift is zero.

  • New Bounds of No-Hit-Zone Frequency-Hopping Sequences with Frequency Shift

    Qianhui WEI  Hongyu HAN  Limengnan ZHOU  Hanzhou WU  

     
    LETTER

      Pubricized:
    2022/11/02
      Vol:
    E106-A No:5
      Page(s):
    803-806

    In quasi-synchronous FH multiple-access (QS-FHMA) systems, no-hit-zone frequency-hopping sequences (NHZ-FHSs) can offer interference-free FHMA performance. But, outside the no-hit-zone (NHZ), the Hamming correlation of traditional NHZ-FHZs maybe so large that the performance becomes not good. And in high-speed mobile environment, Doppler shift phenomenon will appear. In order to ensure the performance of FHMA, it is necessary to study the NHZ-FHSs in the presence of transmission delay and frequency offset. In this paper, We derive a lower bound on the maximum time-frequency two-dimensional Hamming correlation outside of the NHZ of NHZ-FHSs. The Zeng-Zhou-Liu-Liu bound is a particular situation of the new bound for frequency shift is zero.

  • A Semidefinite Programming Approach for Doppler Frequency Shift Based Stationary Target Localization

    Li Juan DENG  Ping WEI  Yan Shen DU  Hua Guo ZHANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:2
      Page(s):
    507-511

    In this work, we address the stationary target localization problem by using Doppler frequency shift (DFS) measurements. Based on the measurement model, the maximum likelihood estimation (MLE) of the target position is reformulated as a constrained weighted least squares (CWLS) problem. However, due to its non-convex nature, it is difficult to solve the problem directly. Thus, in order to yield a semidefinite programming (SDP) problem, we perform a semidefinite relaxation (SDR) technique to relax the CWLS problem. Although the SDP is a relaxation of the original MLE, it can facilitate an accurate estimate without post processing. Simulations are provided to confirm the promising performance of the proposed method.

  • An Effective and Simple Solution for Stationary Target Localization Using Doppler Frequency Shift Measurements

    Li Juan DENG  Ping WEI  Yan Shen DU  Wan Chun LI  Ying Xiang LI  Hong Shu LIAO  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:4
      Page(s):
    1070-1073

    Target determination based on Doppler frequency shift (DFS) measurements is a nontrivial problem because of the nonlinear relation between the position space and the measurements. The conventional methods such as numerical iterative algorithm and grid searching are used to obtain the solution, while the former requires an initial position estimate and the latter needs huge amount of calculations. In this letter, to avoid the problems appearing in those conventional methods, an effective solution is proposed, in which two best linear unbiased estimators (BULEs) are employed to obtain an explicit solution of the proximate target position. Subsequently, this obtained explicit solution is used to initialize the problem of original maximum likelihood estimation (MLE), which can provide a more accurate estimate.

  • Quantization Error Improvement for Optical Quantization Using Dual Rail Configuration

    Tomotaka NAGASHIMA  Makoto HASEGAWA  Takuya MURAKAWA  Tsuyoshi KONISHI  

     
    PAPER-Optical A/D Conversion

      Vol:
    E98-C No:8
      Page(s):
    808-815

    We investigate a quantization error improvement technique using a dual rail configuration for optical quantization. Our proposed optical quantization uses intensity-to-wavelength conversion based on soliton self-frequency shift and spectral compression based on self-phase modulation. However, some unfavorable input peak power regions exist due to stagnations of wavelength shift or distortions of spectral compression. These phenomena could induce a serious quantization error and degrade the effective number of bit (ENOB). In this work, we propose a quantization error improvement technique which can make up for the unfavorable input peak power regions. We experimentally verify the quantization error improvement effect by the proposed technique in 6 bit optical quantization. The estimated ENOB is improved from 5.35 bit to 5.66 bit. In addition, we examine the XPM influence between counter-propagating pulses at high sampling rate. Experimental results and numerical simulation show that the XPM influence is negligible under ∼40 GS/s conditions.

  • Recirculating Frequency Shifter-Based Hybrid Electro-Optic Probing System with Ultra-Wide Bandwidth

    Benoît J. GOUHIER  Ka-Lun LEE  Ampalavanapillai NIRMALATHAS  Christina LIM  Efstratios SKAFIDAS  

     
    PAPER-MWP Sensing Technique

      Vol:
    E98-C No:8
      Page(s):
    857-865

    In this paper, we present a new electro-optic (EO) probing system based on heterodyne detection. The use of a recirculating frequency shifter allows to expand the bandwidth of the system far beyond what is attainable with a conventional heterodyne EO set-up. The performance for the frequencies up to 50GHz is analysed to forecast the viability of the system up to the THz range.

  • Parallel Use of Dispersion Devices for Resolution Improvement of Optical Quantization at High Sampling Rate

    Tomotaka NAGASHIMA  Takema SATOH  Petre CATALIN  Kazuyoshi ITOH  Tsuyoshi KONISHI  

     
    PAPER

      Vol:
    E97-C No:7
      Page(s):
    787-794

    We investigate resolution improvement in optical quantization with keeping high sampling rate performance in optical sampling. Since our optical quantization approach uses power-to-wavelength conversion based on soliton self-frequency shift, a spectral compression can improve resolution in exchange for sampling rate degradation. In this work, we propose a different approach for resolution improvement by parallel use of dispersion devices so as to avoid sampling rate degradation. Additional use of different dispersion devices can assist the wavelength separation ability of an original dispersion device. We demonstrate the principle of resolution improvement in 3 bit optical quantization. Simulation results based on experimental evaluation of 3 bit optical quantization system shows 4 bit optical quantization is achieved by parallel use of dispersion devices in 3 bit optical quantization system. The maximum differential non-linearity (DNL) and integral non-linearity (INL) are 0.49 least significant bit (LSB) and 0.50 LSB, respectively. The effective number of bits (ENOB) estimated to 3.62 bit.

  • Joint CPFSK Modulation and Physical-Layer Network Coding in Two-Way Relay Channels

    Nan SHA  Yuanyuan GAO  Xiaoxin YI  Wenlong LI  Weiwei YANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E97-A No:4
      Page(s):
    1021-1023

    A joint continuous phase frequency shift keying (CPFSK) modulation and physical-layer network coding (PNC), i.e., CPFSK-PNC, is proposed for two-way relay channels (TWRCs). This letter discusses the signal detection of the CPFSK-PNC scheme with emphasis on the maximum-likelihood sequence detection (MLSD) algorithm for the relay receiver. The end-to-end error performance of the proposed CPFSK-PNC scheme is evaluated through simulations.

  • Doppler Shift Based Target Localization Using Semidefinite Relaxation

    Yan Shen DU  Ping WEI  Wan Chun LI  Hong Shu LIAO  

     
    LETTER-Digital Signal Processing

      Vol:
    E97-A No:1
      Page(s):
    397-400

    We propose a novel approach to the target localization problem using Doppler frequency shift measurements. We first reformulate the maximum likelihood estimation (MLE) as a constrained weighted least squares (CWLS) estimation, and then perform the semidefinite relaxation to relax the CWLS problem as a convex semidefinite programming (SDP) problem, which can be efficiently solved using modern convex optimization methods. Finally, the SDP solution can be used to initialize the original MLE which can provide estimates achieve the Cramer-Rao lower bound accuracy. Simulations corroborate the good performance of the proposed method.

  • 100-GS/s 5-Bit Real-Time Optical Quantization for Photonic Analog-to-Digital Conversion

    Takema SATOH  Kazuyoshi ITOH  Tsuyoshi KONISHI  

     
    BRIEF PAPER

      Vol:
    E96-C No:2
      Page(s):
    223-226

    We report a trial of 100-GS/s optical quantization with 5-bit resolution using soliton self-frequency shift (SSFS) and spectral compression. We confirm that 100-GS/s 5-bit optical quantization is realized to quantize a 5.0-GHz sinusoid electrical signal in simulation. In order to experimentally verify the possibility of 100-GS/s 5-bit optical quantization, we execute 5-bit optical quantization by using two sampled signals with 10-ps intervals.

  • A Simple Expression of BER Performance in DPSK/OFDM Systems with Post-Detection Diversity Reception

    Fumihito SASAMORI  Shiro HANDA  Shinjiro OSHITA  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:5
      Page(s):
    1897-1900

    In this letter, we propose a simple but accurate calculation method, that is, an approximate closed-form equation of average bit error rate in DPSK/OFDM systems with post-detection diversity reception over both time- and frequency-selective Rayleigh fading channels. The validity of the proposed method is verified by the fact that BER performances given by the derived equation coincide with those by Monte Carlo simulation.

  • Automatic Modulation Identification Using a Frequency Discriminator

    David ASANO  Mao OHARA  

     
    LETTER-Devices/Circuits for Communications

      Vol:
    E91-B No:2
      Page(s):
    575-578

    In this paper, an automatic identification method based on frequency discrimination is proposed. The proposed method can be used when the received signal is a constant envelope modulation scheme. To test the proposed method PSK and FSK are considered. Using computer simulations, the performance of the proposed method was evaluated and found to be able to distinguish between PSK and FSK well even in the presence of noise.

  • Performance Analysis of Ultra-Fast All-Optical Analog-to-Digital Converter Using Optical Multiple-Level Thresholding Module Based on Self-Frequency Shift in Fiber

    Tsuyoshi KONISHI  Takashi NISHITANI  Kazuyoshi ITOH  

     
    INVITED PAPER

      Vol:
    E90-C No:2
      Page(s):
    405-408

    Performance analysis of ultra-fast all-optical analog-to-digital converter using optical multiple-level thresholding module based on self-frequency shift in fiber is described. In analog-to-digital conversion, the purposes of optical sampling and optical quantization are in the possibility of the speed-up of sampling and quantization processes using various ultra-fast nonlinear phenomena depending on an intensity of a light. The result of analysis indicates that the number of achievable quantized levels of the proposed approach is in the increasing tendency with an increase in the peak power of an input pulse.

  • All-Optical Analog-to-Digital Conversion Using Optical Delay Line Encoders

    Takashi NISHITANI  Tsuyoshi KONISHI  Kazuyoshi ITOH  

     
    LETTER

      Vol:
    E90-C No:2
      Page(s):
    479-480

    We propose and demonstrate the all-optical analog-to-digital conversion (ADC) using optical delay line encoders. Experimental results show that input analog signals are successfully converted into 3-bit digital signals at a bit rate of 40 Gb/s.

  • A Simple Method of BER Calculation in DPSK/OFDM Systems over Fading Channels

    Fumihito SASAMORI  Shiro HANDA  Shinjiro OSHITA  

     
    PAPER-Mobile Information Network and Personal Communications

      Vol:
    E88-A No:1
      Page(s):
    366-373

    In orthogonal frequency division multiplexing (OFDM) systems with differential phase shift keying (DPSK), it is possible to apply differential modulation either in the time or frequency domain depending on the condition of fading channels, such as the Doppler frequency shift and the delay spread. This paper proposes a simple calculation method, that is, an approximate closed-form equation of the bit error rate (BER) in DPSK/OFDM systems mentioned above over both time and frequency selective Rician fading channels. The validity of the proposed method is demonstrated by the fact that the BER performances given by the derived equation coincide with those by Monte Carlo simulation.

  • A Hybrid Circuit with High Isolation for a Two-Wire Full Duplex Cable Modem to Adapt to Variations in Line Impedance

    Jeich MAR  Guan-Chiun CHEN  Ming-Yi LAN  Luo-Shing LUO  

     
    LETTER-Electromagnetic Compatibility(EMC)

      Vol:
    E85-B No:1
      Page(s):
    352-354

    A high isolation hybrid circuit composed of a pair of transformers, a voltage control resistance (VCR) circuit and an automatic impedance control device is designed for a two-wire full duplex cable modem to adapt variable line impedance. A binary frequency shift keying (BFSK) cable modem using the new hybrid circuit with an isolation of 52 dB to 58 dB in the line impedance variation range of 400 to 950 ohm is demonstrated. The isolation of the new hybrid circuit is increased by more than 30 dB over the traditional hybrid circuit for a two-wire full duplex modem in the preset line impedance range.

  • On the Performance of Frequency-Hopped Spread- Spectrum Systems Utilizing Near-Orthogonal Hopping Patterns

    Jyh-Horng WEN  Jee-Wey WANG  

     
    PAPER-Mobile Communication

      Vol:
    E81-B No:11
      Page(s):
    2191-2196

    A simple near-orthogonal code is used as frequency-hopping patterns for the frequency-hopped multiple access systems. Extended RS code is used as channel coding to deplete the effects of hits from simultaneous users. Packet error probability and channel throughput for the system utilizing the near-orthogonal code are evaluated and compared to the corresponding values obtained from the system utilizing random patterns. Results show that the former can provide substantial improvement over the latter. In our illustrated examples, we also show that under the constraint of packet error probability PE 10-2, the maximum achievable number of users with most (n,k) RS codes of interest is less than the number of distinct codewords in the near-orthogonal code. Thus, the number of codewords of the near-orthogonal code is large enough to support the practical application.

  • Error Performance Analysis of FFH/MFSK Systems with Multitone Jamming

    Jyh-Horng WEN  Jee-Wey WANG  

     
    PAPER-Mobile Communication

      Vol:
    E81-B No:10
      Page(s):
    1912-1919

    This paper presents a new approach to computing symbol error probability of fast frequency-hopped M-ary frequency shift keying (FFH/MFSK) systems with majority vote under multitone jamming. For illustrating the applications, we first consider the case in which the source data rate is fixed and the hopping rate is allowed to vary. In this case, the optimum orders of diversity for several values of M are examined. Results show that M=4 outperforms other values. Then, we treat another case in which the hopping rate is fixed and the data rate is adjusted so as to obtain maximum throughput under a given constraint of error probability. In addition to the case of diversity alone, we also evaluate the performances of the fixed hopping rate case with channel coding using convolutional code and BCH code.

  • Performance of FH/MFSK Systems for Speech with Activity Detector over Rayleigh Fading Channels

    Jyh-Horng WEN  Jee-Wey WANG  

     
    PAPER-Spread Spectrum System

      Vol:
    E81-A No:10
      Page(s):
    2101-2108

    This paper presents the performance of FH/MFSK systems, which exploit silent gaps in speech to accommodate more users, over Rayleigh fading channels. Two kinds of receivers are considered: one uses a threshold on the received signal strength to declare whether the signals were present or not, and the other is assumed to have perfect transmitter-state information obtained from using additional bandwidth. Results show that, if the codeword dropping and codeword error are assumed to be equally costly, the former can achieve slightly better performance than the latter in the decoding error probability. This finding suggests that, for the system to exploit silent gaps in speech, it is advantageous for the receiver to use a threshold to declare whether signals were present or not instead of relying on the transmitter-state information.

  • Large Doppler Frequency Compensation Technique for Terrestrial and LEO Satellite Dual Mode DS/CDMA Terminals

    Jae-Woo JEONG  Seiichi SAMPEI  Norihiko MORINAGA  

     
    PAPER-Satellite Communication

      Vol:
    E79-B No:11
      Page(s):
    1696-1703

    This paper proposes a novel Doppler frequency shift compensation technique to achieve terrestrial and low earth orbit (LEO) satellite dual mode DS/CDMA terminals robust to high Doppler shift and multipath fading. In order to satisfy the requirements of wide dynamic range and high accuracy simultaneously, the proposed scheme employs two stage compensation scheme, i.e., coarse compensation to keep dynamic range of about 100 kHz and fine compensation to satisfy its resolution of about 30 Hz, using block demodulation technique. Computer simulation results show that the proposed scheme can sufficiently compensate for the offset frequency up to the range of about 100 kHz at the terrestrial and LEO satellite combined mobile communication systems.

1-20hit(24hit)