1-4hit |
Joong-Won SHIN Masakazu TANUMA Shun-ichiro OHMI
In this research, we investigated the threshold voltage (VTH) control by partial polarization of metal-ferroelectric-semiconductor field-effect transistors (MFSFETs) with 5 nm-thick nondoped HfO2 gate insulator utilizing Kr-plasma sputtering for Pt gate electrode deposition. The remnant polarization (2Pr) of 7.2 μC/cm2 was realized by Kr-plasma sputtering for Pt gate electrode deposition. The memory window (MW) of 0.58 V was realized by the pulse amplitude and width of -5/5 V, 100 ms. Furthermore, the VTH of MFSFET was controllable by program/erase (P/E) input pulse even with the pulse width below 100 ns which may be caused by the reduction of leakage current with decreasing plasma damage.
Joong-Won SHIN Masakazu TANUMA Shun-ichiro OHMI
In this research, we investigated the metal-ferroelectric-semiconductor field-effect transistors (MFSFETs) with 5nm thick nondoped HfO2 gate insulator by decreasing the sputtering power for Pt gate electrode deposition. The leakage current was effectively reduced to 2.6×10-8A/cm2 at the voltage of -1.5V by the sputtering power of 40W for Pt electrode deposition. Furthermore, the memory window (MW) of 0.53V and retention time over 10 years were realized.
Atsushi NOYA Mayumi B. TAKEYAMA
A high temperature performance of a W2N compound barrier in the model electrode configuration of W/W2N/poly-Si was examined. The stacked electrode was fairly stable upon annealing at 850 for 1 h. In this electrode configuration, the decomposition and outdiffusion of nitrogen, which were observed in the electrode with a WNx barrier incorporating nitrogen atoms at the interstitial sites in the bcc W lattice, were completely suppressed. We interpreted that the obtained excellent high temperature performance was attributed to the strong chemical interaction forming chemical bonds between nitrogen and W atoms in the W2N compound barrier.
Atsushi NOYA Mayumi B. TAKEYAMA
An experimental report was presented on a high temperature performance of a ZrN barrier in the model system of W/ZrN/poly-Si as a poly-metal gate electrode configuration. The absence of interdiffusion, reaction and/or mixing of the ZrN barrier with adjoining W and poly-Si layers resulted in a successful demonstration of the thermally stable poly-metal gate electrode configuration which tolerated annealing at 850 for 1 h.