The search functionality is under construction.

Keyword Search Result

[Keyword] gender recognition(4hit)

1-4hit
  • Gender Recognition Using a Gaze-Guided Self-Attention Mechanism Robust Against Background Bias in Training Samples

    Masashi NISHIYAMA  Michiko INOUE  Yoshio IWAI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2021/11/18
      Vol:
    E105-D No:2
      Page(s):
    415-426

    We propose an attention mechanism in deep learning networks for gender recognition using the gaze distribution of human observers when they judge the gender of people in pedestrian images. Prevalent attention mechanisms spatially compute the correlation among values of all cells in an input feature map to calculate attention weights. If a large bias in the background of pedestrian images (e.g., test samples and training samples containing different backgrounds) is present, the attention weights learned using the prevalent attention mechanisms are affected by the bias, which in turn reduces the accuracy of gender recognition. To avoid this problem, we incorporate an attention mechanism called gaze-guided self-attention (GSA) that is inspired by human visual attention. Our method assigns spatially suitable attention weights to each input feature map using the gaze distribution of human observers. In particular, GSA yields promising results even when using training samples with the background bias. The results of experiments on publicly available datasets confirm that our GSA, using the gaze distribution, is more accurate in gender recognition than currently available attention-based methods in the case of background bias between training and test samples.

  • LGCN: Learnable Gabor Convolution Network for Human Gender Recognition in the Wild Open Access

    Peng CHEN  Weijun LI  Linjun SUN  Xin NING  Lina YU  Liping ZHANG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2019/06/13
      Vol:
    E102-D No:10
      Page(s):
    2067-2071

    Human gender recognition in the wild is a challenging task due to complex face variations, such as poses, lighting, occlusions, etc. In this letter, learnable Gabor convolutional network (LGCN), a new neural network computing framework for gender recognition was proposed. In LGCN, a learnable Gabor filter (LGF) is introduced and combined with the convolutional neural network (CNN). Specifically, the proposed framework is constructed by replacing some first layer convolutional kernels of a standard CNN with LGFs. Here, LGFs learn intrinsic parameters by using standard back propagation method, so that the values of those parameters are no longer fixed by experience as traditional methods, but can be modified by self-learning automatically. In addition, the performance of LGCN in gender recognition is further improved by applying a proposed feature combination strategy. The experimental results demonstrate that, compared to the standard CNNs with identical network architecture, our approach achieves better performance on three challenging public datasets without introducing any sacrifice in parameter size.

  • Gender Attribute Mining with Hand-Dorsa Vein Image Based on Unsupervised Sparse Feature Learning

    Jun WANG  Guoqing WANG  Zaiyu PAN  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/10/12
      Vol:
    E101-D No:1
      Page(s):
    257-260

    Gender classification with hand-dorsa vein information, a new soft biometric trait, is solved with the proposed unsupervised sparse feature learning model, state-of-the-art accuracy demonstrates the effectiveness of the proposed model. Besides, we also argue that the proposed data reconstruction model is also applicable to age estimation when comprehensive database differing in age is accessible.

  • Bimodal Vein Recognition Based on Task-Specific Transfer Learning

    Guoqing WANG  Jun WANG  Zaiyu PAN  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/04/17
      Vol:
    E100-D No:7
      Page(s):
    1538-1541

    Both gender and identity recognition task with hand vein information is solved based on the proposed cross-selected-domain transfer learning model. State-of-the-art recognition results demonstrate the effectiveness of the proposed model for pattern recognition task, and the capability to avoid over-fitting of fine-tuning DCNN with small-scaled database.