1-5hit |
Zhaohu LIU Peng SONG Jinshuai MU Wenming ZHENG
Most existing multi-view subspace clustering approaches only capture the inter-view similarities between different views and ignore the optimal local geometric structure of the original data. To this end, in this letter, we put forward a novel method named shared latent embedding learning for multi-view subspace clustering (SLE-MSC), which can efficiently capture a better latent space. To be specific, we introduce a pseudo-label constraint to capture the intra-view similarities within each view. Meanwhile, we utilize a novel optimal graph Laplacian to learn the consistent latent representation, in which the common manifold is considered as the optimal manifold to obtain a more reasonable local geometric structure. Comprehensive experimental results indicate the superiority and effectiveness of the proposed method.
Takahiro MATSUDA Fumie ONO Shinsuke HARA
In wireless links between ground stations and UAVs (Unmanned Aerial Vehicles), wireless signals may be attenuated by obstructions such as buildings. A three-dimensional RSS (Received Signal Strength) map (3D-RSS map), which represents a set of RSSs at various reception points in a three-dimensional area, is a promising geographical database that can be used to design reliable ground-to-air wireless links. The construction of a 3D-RSS map requires higher computational complexity, especially for a large 3D area. In order to sequentially estimate a 3D-RSS map from partial observations of RSS values in the 3D area, we propose a graph Laplacian-based sequential smooth estimator. In the proposed estimator, the 3D area is divided into voxels, and a UAV observes the RSS values at the voxels along a predetermined path. By considering the voxels as vertices in an undirected graph, a measurement graph is dynamically constructed using vertices from which recent observations were obtained and their neighboring vertices, and the 3D-RSS map is sequentially estimated by performing graph Laplacian regularized least square estimation.
Dongliang CHEN Peng SONG Wenjing ZHANG Weijian ZHANG Bingui XU Xuan ZHOU
In this letter, we propose a novel robust transferable subspace learning (RTSL) method for cross-corpus facial expression recognition. In this method, on one hand, we present a novel distance metric algorithm, which jointly considers the local and global distance distribution measure, to reduce the cross-corpus mismatch. On the other hand, we design a label guidance strategy to improve the discriminate ability of subspace. Thus, the RTSL is much more robust to the cross-corpus recognition problem than traditional transfer learning methods. We conduct extensive experiments on several facial expression corpora to evaluate the recognition performance of RTSL. The results demonstrate the superiority of the proposed method over some state-of-the-art methods.
A limited number of types of sound event occur in an acoustic scene and some sound events tend to co-occur in the scene; for example, the sound events “dishes” and “glass jingling” are likely to co-occur in the acoustic scene “cooking.” In this paper, we propose a method of sound event detection using graph Laplacian regularization with sound event co-occurrence taken into account. In the proposed method, the occurrences of sound events are expressed as a graph whose nodes indicate the frequencies of event occurrence and whose edges indicate the sound event co-occurrences. This graph representation is then utilized for the model training of sound event detection, which is optimized under an objective function with a regularization term considering the graph structure of sound event occurrence and co-occurrence. Evaluation experiments using the TUT Sound Events 2016 and 2017 detasets, and the TUT Acoustic Scenes 2016 dataset show that the proposed method improves the performance of sound event detection by 7.9 percentage points compared with the conventional CNN-BiGRU-based detection method in terms of the segment-based F1 score. In particular, the experimental results indicate that the proposed method enables the detection of co-occurring sound events more accurately than the conventional method.
Nobuyuki SHIMIZU Masashi SUGIYAMA Hiroshi NAKAGAWA
Traditionally, popular synonym acquisition methods are based on the distributional hypothesis, and a metric such as Jaccard coefficients is used to evaluate the similarity between the contexts of words to obtain synonyms for a query. On the other hand, when one tries to compile and clean a thesaurus, one often already has a modest number of synonym relations at hand. Could something be done with a half-built thesaurus alone? We propose the use of spectral methods and discuss their relation to other network-based algorithms in natural language processing (NLP), such as PageRank and Bootstrapping. Since compiling a thesaurus is very laborious, we believe that adding the proposed method to the toolkit of thesaurus constructors would significantly ease the pain in accomplishing this task.