The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] high altitude platform(3hit)

1-3hit
  • Dynamic Hybrid Beamforming-Based HAP Massive MIMO with Statistical CSI Open Access

    Pingping JI  Lingge JIANG  Chen HE  Di HE  Zhuxian LIAN  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2023/12/25
      Vol:
    E107-A No:8
      Page(s):
    1417-1420

    In this letter, we study the dynamic antenna grouping and the hybrid beamforming for high altitude platform (HAP) massive multiple-input multiple-output (MIMO) systems. We first exploit the fact that the ergodic sum rate is only related to statistical channel state information (SCSI) in the large-scale array regime, and then we utilize it to perform the dynamic antenna grouping and design the RF beamformer. By applying the Gershgorin Circle Theorem, the dynamic antenna grouping is realized based on the novel statistical distance metric instead of the value of the instantaneous channels. The RF beamformer is designed according to the singular value decomposition of the statistical correlation matrix according to the obtained dynamic antenna group. Dynamic subarrays mean each RF chain is linked with a dynamic antenna sub-set. The baseband beamformer is derived by utilizing the zero forcing (ZF). Numerical results demonstrate the performance enhancement of our proposed dynamic hybrid precoding (DHP) algorithm.

  • TCP/IP Performance Evaluations Based on Elevation Angles for Mobile Communications Employing Stratospheric Platform

    Marry KONG  Otabek YORKINOV  Shigeru SHIMAMOTO  

     
    PAPER

      Vol:
    E92-B No:11
      Page(s):
    3335-3344

    This paper describes a proposed propagation estimation method and TCP/IP-based evaluations for mobile communications employing a stratospheric platform. To estimate a wireless channel, a realistic and detailed description of its physical environment must be accurately defined. Therefore, a building distribution model characterizing the physical environment in areas in Japan is presented. The analyses of the propagation estimation method are based on the "ray-tracing" model. The results from the proposed method are derived depending on elevation and azimuth angles. In order to validate our results, comparisons between the proposed method and our previous measurement are made for a typical semi-urban area in Japan. The comparisons show close agreement between the estimation results and the measurement results. Finally and interestingly, we present communication performance evaluations based on TCP/IP protocol by using the results achieved from our channel estimation with semi-analytical and simulation approach.

  • Joint System of Terrestrial and High Altitude Platform Station (HAPS) Cellular for W-CDMA Mobile Communications

    Shinya MASUMURA  Masao NAKAGAWA  

     
    PAPER

      Vol:
    E85-B No:10
      Page(s):
    2051-2058

    The plan of High Altitude Platform Station (HAPS) is considered as a revolutionary wireless system plan with several economic and technological advantages over both space- or ground-based counterparts. In this paper, we propose a joint system of terrestrial and HAPS cellular for Wideband-CDMA mobile communication. This system makes the conventional terrestrial W-CDMA cellular area smaller and the remainder area covered by HAPS to increase the total capacity. Furthermore in down link channel, we introduce the polarized wave and doughnut-like radiation. However, in the proposed system, the performance would be dependent on the terminal position especially near the boundary of doughnut-like cell zone. To overcome this, site diversity that uses both signals from terrestrial Base Station and HAPS Base Station is also introduced. To confirm the availability of the proposed system, we evaluate the system performance by computer simulation.