The search functionality is under construction.

Keyword Search Result

[Keyword] human activity recognition(4hit)

1-4hit
  • Mining User Activity Patterns from Time-Series Data Obtained from UWB Sensors in Indoor Environments Open Access

    Muhammad FAWAD RAHIM  Tessai HAYAMA  

     
    PAPER

      Pubricized:
    2023/12/19
      Vol:
    E107-D No:4
      Page(s):
    459-467

    In recent years, location-based technologies for ubiquitous environments have aimed to realize services tailored to each purpose based on information about an individual's current location. To establish such advanced location-based services, an estimation technology that can accurately recognize and predict the movements of people and objects is necessary. Although global positioning system (GPS) has already been used as a standard for outdoor positioning technology and many services have been realized, several techniques using conventional wireless sensors such as Wi-Fi, RFID, and Bluetooth have been considered for indoor positioning technology. However, conventional wireless indoor positioning is prone to the effects of noise, and the large range of estimated indoor locations makes it difficult to identify human activities precisely. We propose a method to mine user activity patterns from time-series data of user's locationss in an indoor environment using ultra-wideband (UWB) sensors. An UWB sensor is useful for indoor positioning due to its high noise immunity and measurement accuracy, however, to our knowledge, estimation and prediction of human indoor activities using UWB sensors have not yet been addressed. The proposed method consists of three steps: 1) obtaining time-series data of the user's location using a UWB sensor attached to the user, and then estimating the areas where the user has stayed; 2) associating each area of the user's stay with a nearby landmark of activity and assigning indoor activities; and 3) mining the user's activity patterns based on the user's indoor activities and their transitions. We conducted experiments to evaluate the proposed method by investigating the accuracy of estimating the user's area of stay using a UWB sensor and observing the results of activity pattern mining applied to actual laboratory members over 30-days. The results showed that the proposed method is superior to a comparison method, Time-based clustering algorithm, in estimating the stay areas precisely, and that it is possible to reveal the user's activity patterns appropriately in the actual environment.

  • The Effect of Axis-Wise Triaxial Acceleration Data Fusion in CNN-Based Human Activity Recognition

    Xinxin HAN  Jian YE  Jia LUO  Haiying ZHOU  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/01/14
      Vol:
    E103-D No:4
      Page(s):
    813-824

    The triaxial accelerometer is one of the most important sensors for human activity recognition (HAR). It has been observed that the relations between the axes of a triaxial accelerometer plays a significant role in improving the accuracy of activity recognition. However, the existing research rarely focuses on these relations, but rather on the fusion of multiple sensors. In this paper, we propose a data fusion-based convolutional neural network (CNN) approach to effectively use the relations between the axes. We design a single-channel data fusion method and multichannel data fusion method in consideration of the diversified formats of sensor data. After obtaining the fused data, a CNN is used to extract the features and perform classification. The experiments show that the proposed approach has an advantage over the CNN in accuracy. Moreover, the single-channel model achieves an accuracy of 98.83% with the WISDM dataset, which is higher than that of state-of-the-art methods.

  • Daily Activity Recognition with Large-Scaled Real-Life Recording Datasets Based on Deep Neural Network Using Multi-Modal Signals

    Tomoki HAYASHI  Masafumi NISHIDA  Norihide KITAOKA  Tomoki TODA  Kazuya TAKEDA  

     
    PAPER-Engineering Acoustics

      Vol:
    E101-A No:1
      Page(s):
    199-210

    In this study, toward the development of smartphone-based monitoring system for life logging, we collect over 1,400 hours of data by recording including both the outdoor and indoor daily activities of 19 subjects, under practical conditions with a smartphone and a small camera. We then construct a huge human activity database which consists of an environmental sound signal, triaxial acceleration signals and manually annotated activity tags. Using our constructed database, we evaluate the activity recognition performance of deep neural networks (DNNs), which have achieved great performance in various fields, and apply DNN-based adaptation techniques to improve the performance with only a small amount of subject-specific training data. We experimentally demonstrate that; 1) the use of multi-modal signal, including environmental sound and triaxial acceleration signals with a DNN is effective for the improvement of activity recognition performance, 2) the DNN can discriminate specified activities from a mixture of ambiguous activities, and 3) DNN-based adaptation methods are effective even if only a small amount of subject-specific training data is available.

  • Implementation of HMM-Based Human Activity Recognition Using Single Triaxial Accelerometer

    Chang Woo HAN  Shin Jae KANG  Nam Soo KIM  

     
    LETTER-Digital Signal Processing

      Vol:
    E93-A No:7
      Page(s):
    1379-1383

    In this letter, we propose a novel approach to human activity recognition. We present a class of features that are robust to the tilt of the attached sensor module and a state transition model suitable for HMM-based activity recognition. In addition, postprocessing techniques are applied to stabilize the recognition results. The proposed approach shows significant improvements in recognition experiments over a variety of human activity DB.