1-7hit |
Thanh-Duc CHAU Junfeng LI Masato AKAGI
Sound source localization (SSL), with a binaural input in practical environments, is a challenging task due to the effects of noise and reverberation. In psychoacoustic research field, one of the theories to explain the mechanism of human perception in such environments is the well-known equalization-cancellation (EC) model. Motivated by the EC theory, this paper investigates a binaural SSL method by integrating EC procedures into a beamforming technique. The principle idea is that the EC procedures are first utilized to eliminate the sound signal component at each candidate direction respectively; direction of sound source is then determined as the direction at which the residual energy is minimal. The EC procedures applied in the proposed method differ from those in traditional EC models, in which the interference signals in rooms are accounted in E and C operations based on limited prior known information. Experimental results demonstrate that our proposed method outperforms the traditional SSL algorithms in the presence of noise and reverberation simultaneously.
A new type of humanoid robot arm which can coexist and be interactive with human beings are looked for. For the purpose of implementation of human smooth and fast movement to a pneumatic robot, the author used a humanoid robot arm with pneumatic agonist-antagonist actuators as endoskeletons which has control mechanism in the stiffness of each joint, and the controllability was experimentally discussed. Using Kitamori 's method to experimentally decide the control gains and using I-PD controller, three joints of the humanoid robot arm were experimentally controlled. The damping control algorithm was also adopted to the wrist joint, to modify the speed in accordance with the power. The results showed that the controllability to step-wise input was less than one degree in error to follow the target angles, and the time constant was less than one second. The simultaneous input of command to three joints was brought about the overshoot of about ten percent increase in error. The humanoid robot arm can generate the calligraphic motions, moving quickly at some times but slowly at other times, or particularly softly on some occasions but stiffly on other occasions at high accuracy.
Kiyoshi HOSHINO Ichiro KAWABUCHI
Pneumatic pressure, which is easy enough to be handled in comparison with hydraulic pressure and is endowed with high safety, is available for a power source of a robot arm to be utilized in concert with human beings to do various types of work. But pneumatic pressure is so low in comparison with hydraulic pressure that an air cylinder having a diameter long enough and stroke wide enough is required to obtain great output power. In this study, therefore, the investigation was made with layout of air cylinders and transmission mechanisms of the motion power directed toward the driving joints to be followed by development of a new humanoid robot arm with seven degrees of freedom in which air cylinders are compactly incorporated. To be concrete with this, contrivance was made with an endoskeleton structure allowing almost all of the structure materials of the individual arm joints to be shared by the air cylinder with incorporation of the air cylinder in the axes of the upper arm joint and forearm joints by paying attention to the fact that the cylinder itself has high strength. The evaluation experiments driving the robot arm referred to above were conducted by means of I-PD control. The results suggested that the mechanism of the robot with seven degrees of freedom having pneumatic actuators proposed in this study is useful as the humanoid robot arm. The quick and accurate motions were accomplished with I-PD control which is relatively easy to be dealt with but not suitable for non-linear actuator system.
Yong-Ho SEO Hun-Young PARK Taewoo HAN Hyun Seung YANG
This paper presents a new type of wearable teleoperation system that can be applied to the control of a humanoid robot. The proposed system has self-contained computing hardware with a stereo head-mounted display, a microphone, a set of headphones, and a wireless LAN. It also has a mechanism that tracks arm and head motion by using several types of sensors that detect the motion data of an operator, along with a simple force reflection mechanism that uses vibration motors at appropriate joints. For remote tasks, we use intelligent self-sensory feedback and autonomous behavior, such as automatic grasping and obstacle avoidance in a slave robot, and we feed the information back to an operator through a multimodal communication channel. Through this teleoperation system, we successfully demonstrate several teleoperative tasks, including object manipulation and mobile platform control of a humanoid robot.
Toshimitsu USHIO Keigo KOBAYASHI Masakazu ADACHI Hideyuki TAKAHASHI Atsuhito NAKATANI
This paper considers a motion planning method for humanoid robots. First, we review a modular state net which is a state net representing behavior of a part of the humanoid robots. Each whole body motion of the humanoid robots is represented by a combination of modular state nets for those parts. In order to obtain a feasible path of the whole body, a timed Petri net is used as an abstracted model of a set of all modular state nets. Next, we show an algorithm for constructing nonlinear dynamics which describes a periodic motion. Finally, we extend the state net in order to represent primitive periodic motions and their transition relation so that we can generate a sequence of primitive periodic motions satisfying a specified task.
Kiyoshi HOSHINO Ichiro KAWABUCHI
The purpose of this study is to design a humanoid robotic hand system that is capable of conveying feelings and sensitivities by finger movement for the non-verbal communication between men and robots in the near future. In this paper, studies have been made in four steps. First, a small-sized and light-weight robotic hand was developed to be used as the humanoid according to the concept of extracting required minimum motor functions and implementing them to the robot. Second, basic characteristics of the movement were checked by experiments, simple feedforward control mechanism was designed based on velocity control, and a system capable of tracking joint time-series change command with arbitrary pattern input was realized. Third, tracking performances with regard to sinusoidal input with different frequencies were studied for evaluation of the system thus realized, and space- and time-related accuracy were investigated. Fourth, the sign language motions were generated as examples of information transmission by finger movement. A series of results thus obtained indicated that this robotic hand is capable of transmitting information promptly with comparatively high accuracy through the movement.
This paper presents the concepts and methodology of knowledge-based information modeling based on Cognitive Science for realizing the autonomous humanoid service robotic arm and hand system HARIS. The HARIS robotic system consists of model-based 3D vision, intelligent scheduler, computerized arm/hand controller, humanoid HARIS arm/hand unit and human interface, and aims to serve the aged and disabled on desk-top object manipulations. The world model, i.e., a shared knowledge base, is introduced to work as a communication channel among the software modules. The task scheduling as well as the 3D-vision is based on Cognitive Science, i.e., a human's way of vision and scheduling is considered in designing the knowledge-based software system. The key idea is to use "words" in describing a scene, scheduling tasks, controlling an arm and hand, and interacting with a human. The world model plays a key role in fusing a variety of distributed functions. The generalized frame-based knowledge engineering environment ZERO++ has been effectively used as a software platform in implementing the system. The experimental system is working within a limited situation successfully. Through the introduction of Cognitive Science-based information modeling we have learned useful hints for realizing human-robot symbiosis, that is our long term goal of the project.