The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] hybrid electric vehicles(2hit)

1-2hit
  • Analysis of Dual-Rotor PM Machine Incorporating Intelligent Speed Control Suitable for CVT Used in HEVs

    Jinhua DU  Deng YAI  Yuntian XUE  Quanwei LIU  

     
    PAPER-Electromechanical Devices and Components

      Vol:
    E102-C No:1
      Page(s):
    83-90

    Dual-rotor machine (DRM) is a multiple input and output electromechanical device with two electrical and two mechanical ports which make it an optimal transmission system for hybrid electric vehicles. In attempt to boost its performance and efficiency, this work presents a dual-rotor permanent magnet (DR-PM) machine system used for continuously variable transmission (CVT) in HEVs. The proposed DR-PM machine is analyzed, and modeled in consideration of vehicle driving requirements. Considering energy conversion modes and torque transfer modes, operation conditions of the DR-PM machine system used for CVT are illustrated in detail. Integrated control model of the system is carried out, besides, intelligent speed ratio control strategy is designed by analyzing the dynamic coupling modes upon the integrated models to satisfy the performance requirements, reasonable energy-split between machine and engine, and optimal fuel economy. Experimental results confirm the validity of the mathematical model of the DR-PM machine system in the application of CVT, and the effectiveness of the intelligent speed ratio control strategy.

  • Modeling of Electric Vehicle Charging Systems in Communications Enabled Smart Grids

    Seung Jun BAEK  Daehee KIM  Seong-Jun OH  Jong-Arm JUN  

     
    LETTER-Information Network

      Vol:
    E94-D No:8
      Page(s):
    1708-1711

    We consider a queuing model with applications to electric vehicle (EV) charging systems in smart grids. We adopt a scheme where an Electric Service Company (ESCo) broadcasts a one bit signal to EVs, possibly indicating 'on-peak' periods during which electricity cost is high. EVs randomly suspend/resume charging based on the signal. To model the dynamics of EVs we propose an M/M/∞ queue with random interruptions, and analyze the dynamics using time-scale decomposition. There exists a trade-off: one may postpone charging activity to 'off-peak' periods during which electricity cost is cheaper, however this incurs extra delay in completion of charging. Using our model we characterize achievable trade-offs between the mean cost and delay perceived by users. Next we consider a scenario where EVs respond to the signal based on the individual loads. Simulation results show that peak electricity demand can be reduced if EVs carrying higher loads are less sensitive to the signal.