The search functionality is under construction.

Keyword Search Result

[Keyword] image encryption(5hit)

1-5hit
  • Image and Model Transformation with Secret Key for Vision Transformer

    Hitoshi KIYA  Ryota IIJIMA  Aprilpyone MAUNGMAUNG  Yuma KINOSHITA  

     
    INVITED PAPER

      Pubricized:
    2022/11/02
      Vol:
    E106-D No:1
      Page(s):
    2-11

    In this paper, we propose a combined use of transformed images and vision transformer (ViT) models transformed with a secret key. We show for the first time that models trained with plain images can be directly transformed to models trained with encrypted images on the basis of the ViT architecture, and the performance of the transformed models is the same as models trained with plain images when using test images encrypted with the key. In addition, the proposed scheme does not require any specially prepared data for training models or network modification, so it also allows us to easily update the secret key. In an experiment, the effectiveness of the proposed scheme is evaluated in terms of performance degradation and model protection performance in an image classification task on the CIFAR-10 dataset.

  • Image Manipulation Specifications on Social Networking Services for Encryption-then-Compression Systems

    Tatsuya CHUMAN  Kenta IIDA  Warit SIRICHOTEDUMRONG  Hitoshi KIYA  

     
    PAPER

      Pubricized:
    2018/10/19
      Vol:
    E102-D No:1
      Page(s):
    11-18

    Encryption-then-Compression (EtC) systems have been proposed to securely transmit images through an untrusted channel provider. In this study, EtC systems were applied to social media like Twitter that carry out image manipulations. The block scrambling-based encryption schemes used in EtC systems were evaluated in terms of their robustness against image manipulation on social media. The aim was to investigate how five social networking service (SNS) providers, Facebook, Twitter, Google+, Tumblr and Flickr, manipulate images and to determine whether the encrypted images uploaded to SNS providers can avoid being distorted by such manipulations. In an experiment, encrypted and non-encrypted JPEG images were uploaded to various SNS providers. The results show that EtC systems are applicable to the five SNS providers.

  • Two-Dimensional Compressed Sensing Using Two-Dimensional Random Permutation for Image Encryption-then-Compression Applications

    Yuqiang CAO  Weiguo GONG  Bo ZHANG  Fanxin ZENG  Sen BAI  

     
    LETTER-Cryptography and Information Security

      Vol:
    E101-A No:2
      Page(s):
    526-530

    Block compressed sensing with random permutation (BCS-RP) has been shown to be very effective for image Encryption-then-Compression (ETC) applications. However, in the BCS-RP scheme, the statistical information of the blocks is disclosed, because the encryption is conducted within each small block of the image. To solve this problem, a two-dimension compressed sensing (2DCS) with 2D random permutation (2DRP) strategy for image ETC applications is proposed in this letter, where the 2DRP strategy is used for encrypting the image and the 2DCS scheme is used for compressing the encrypted image. Compared with the BCS-RP scheme, the proposed approach has two benefits. Firstly, it offers better security. Secondly, it obtains a significant gain of peak signal-to-noise ratio (PSNR) of the reconstructed-images.

  • Image Encryption Based on a Genetic Algorithm and a Chaotic System

    Xiaoqiang ZHANG  Xuesong WANG  Yuhu CHENG  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E98-B No:5
      Page(s):
    824-833

    To ensure the security of image transmission, this paper presents a new image encryption algorithm based on a genetic algorithm (GA) and a piecewise linear chaotic map (PWLCM), which adopts the classical diffusion-substitution architecture. The GA is used to identify and output the optimal encrypted image that has the highest entropy value, the lowest correlation coefficient among adjacent pixels and the strongest ability to resist differential attack. The PWLCM is used to scramble pixel positions and change pixel values. Experiments and analyses show that the new algorithm possesses a large key space and resists brute-force, statistical and differential attacks. Meanwhile, the comparative analysis also indicates the superiority of our proposed algorithm over a similar, recently published, algorithm.

  • Image Encryption Scheme Based on a Truncated Baker Transformation

    Kenji YANO  Kiyoshi TANAKA  

     
    PAPER

      Vol:
    E85-A No:9
      Page(s):
    2025-2035

    In this paper, we focus on an image encryption scheme based on a truncated Baker transformation. The truncated Baker transformation globally preserves the original dynamics of Baker transformation but incorporates a random local rotation operator between two neighbor elements in the mapping domain in order to keep a finite precision. It generates binary sequences (the dynamics of elements) which have statistically good features on ergodicity, mixing and chaotic properties. The image encryption scheme extended from the truncated Baker transformation efficiently shuffles the input gray level image satisfying fundamental conditions on confusion and diffusion required for image encryption schemes. However, this scheme uses many binary sequences and thus needs to keep a large volume of secret keys. In order to solve this problem we introduce Peano space-filling curve in this scheme, which remarkably reduce the key size and mapping iterations without deteriorating good shuffling properties attained by this scheme.