The search functionality is under construction.

Keyword Search Result

[Keyword] image resolution(2hit)

1-2hit
  • Nonuniformity Measurement of Image Resolution under Effect of Color Speckle for Raster-Scan RGB Laser Mobile Projector

    Junichi KINOSHITA  Akira TAKAMORI  Kazuhisa YAMAMOTO  Kazuo KURODA  Koji SUZUKI  Keisuke HIEDA  

     
    PAPER

      Pubricized:
    2021/08/17
      Vol:
    E105-C No:2
      Page(s):
    86-94

    Image resolution under the effect of color speckle was successfully measured for a raster-scan mobile projector, using the modified contrast modulation method. This method was based on the eye-diagram analysis for distinguishing the binary image signals, black-and-white line pairs. The image resolution and the related metrics, illuminance, chromaticity, and speckle contrast were measured at the nine regions on the full-frame area projected on a standard diffusive reflectance screen. The nonuniformity data over the nine regions were discussed and analyzed.

  • Resolution Conversion Method with High Image Quality Preservation

    Saprangsit MRUETUSATORN  Hirotsugu KINOSHITA  Yoshinori SAKAI  

     
    PAPER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E77-D No:6
      Page(s):
    686-693

    This paper discusses a new image resolution conversion method which converts not only spatial resolution but also amplitude resolution. This method involves considering impulse responses of image devices and human visual characteristics, and can preserve high image quality. This paper considers a system that digitizes the multilevel input image with high spatial resolution and low amplitude resolution using an image scanner, and outputs the image with low spatial resolution and high amplitude resolution on a CRT display. The algorithm thus reduces the number of pixels while increasing the number of brightness levels. Since a CRT display is chosen as the output device, the distribution of each spot in the display, which is modeled as a Gaussian function, is taken as the impulse response. The output image is then expressed as the summation of various amplitudes of the impulse response. Furthermore, human visual perception, which bears a nonlinear relationship to the spatial frequency component, is simplified and modeled with a cascade combination of low-pass and high-pass filters. The output amplitude is determined so that the error between the output image and the input image, after passing through the visual perception filter, is minimized. According to the results of a simulation, it is shown that image quality can be largely preserved by the proposed method, while significant image information is lost by conventional methods.