1-2hit |
Hayate KIMOTO Kentaro NISHIMORI Takefumi HIRAGURI Hideo MAKINO
This paper proposes Fast Fourier Transform (FFT) based orthogonal beam selection method at the user terminals (UTs) to reduce the number of nulls for the other users except an intended user by the Block Diagonalization (BD) algorithm in multiuser MIMO (MU-MIMO) sytems. The BD algorithm has been proposed in order to realize MU-MIMO broadcast transmission with a realistic signal processing burden. The BD algorithm cancels inter-user interference by creating the weights so that the channel matrixes for the other users are set to be zero matrixes. However, when the number of transmit antennas is equals to the total number of received antennas, the transmission rate by the BD algorithm is decreased. The proposed method realizes the performance improvement compared to the conventional BD algorithm without the burden on the UTs. It is verified via bit error rate (BER) evaluation that the proposed method is effective compared to the conventional BD algorithm and antenna selection method. Moreover, the effectiveness of proposed method is verified by the performance evaluation considering medium access control (MAC) layer in a comparison with the conventional BD algorithm which needs the channel state information (CSI) feedback. Because the proposed method can be easily applied to beamforming without the CSI feedback (implicit beamforming), it is shown that the propose method is effective from a point of view on the transmission efficiency in MU-MIMO system.
Takefumi HIRAGURI Kentaro NISHIMORI
Multiple-input multiple-output (MIMO) transmission is attracting interest for increasing the transmission rates of wireless systems. This paper surveys MIMO transmission technology from the viewpoints of transmission methods, access control schemes, and total transmission efficiency. We consider wireless local area networks (WLAN) systems that use MIMO technology; moreover, we focus on multiuser MIMO (MU-MIMO) technology, which will be introduced in next-generation WLAN systems such as IEEE802.11ac. This paper explains the differences in the detailed access control procedures for MIMO and MU-MIMO transmission, including channel state information (CSI) acquisition. Furthermore, the issues related to CSI feedback and solutions are also discussed. Related works on the medium access control (MAC) protocol in MIMO/MU-MIMO transmission are introduced. In addition, the throughput performance using MIMO/MU-MIMO transmission is evaluated considering an IEEE802.11ac-based WLAN system. From the numerical evaluation, it is shown that the overhead due to CSI feedback from the user terminals to the base station causes a decrease in the throughput. We verified that implicit beamforming, which eliminates CSI feedback, is effective for solving this issue.