The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] indent(2hit)

1-2hit
  • Experimental Investigation and Numerical Simulation on the Role of Sphere Indenter in Measuring Contact Resistance of Flat Rivets

    Wanbin REN  Yu CHEN  Shengjun XUE  Guenther HORN  Guofu ZHAI  

     
    PAPER

      Vol:
    E97-C No:9
      Page(s):
    873-879

    There has been increasing demand to research the measuring method to characterize the batch consistency of contact rivets. An automated test equipment has been described that makes it possible to measure the electrical contact resistance with high efficiency. The relationship between contact force and contact resistance during the loading and unloading process was measured explicitly using AgPd alloy, stainless steel and sapphire substrate material with Au coatings as sphere indenters separately. To explain the phenomena of contact resistance decreasing more slowly than the traditional theoretical results during loading, the indenter with coating and rivet are modeled by using the commercial FEM software COMSOL Multiphysics. Besides the constriction resistance, the transition region Au coating resistance and the bulk resistance of the substrate are deduced from the simulated current lines profiles and iso-potentials. The difference of electrical conductivity between indenter material and gold coating is the reason for the occurrence of the transition region.

  • Wedge-Supported Cylindrical Microstrip Lines with an Indented Ground

    Jean-Fu KIANG  Chung-I G. HSU  Ching-Her LEE  

     
    PAPER-Electromagnetic Theory

      Vol:
    E81-C No:8
      Page(s):
    1358-1365

    A combined mode-matching and moment method is proposed to calculate the capacitance matrix of wedge-supported cylindrical microstrip lines with an indented ground. Each indent is modeled as a multilayered medium in which the potential distribution is systematically derived by defining reflection matrices. An integral equation is derived in terms of the charge distribution on the strip surfaces. Galerkin's method is then applied to solve the integral equation for the charge distribution. The effects of strip width, strip separation, indent depth, and indent shape are analyzed.