The search functionality is under construction.

Keyword Search Result

[Keyword] indoor environment(9hit)

1-9hit
  • Cluster Power Variation Characteristics for 3GHz-Band MIMO Communication System in a Crowded Indoor Environment

    Kentaro SAITO  Tetsuro IMAI  Koshiro KITAO  Yukihiko OKUMURA  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:5
      Page(s):
    1131-1142

    In recent years, multiple-input multiple-output (MIMO) channel models for crowded areas, such as indoor offices, shops, and outdoor hotspot environments, have become a topic of significant interest. In such crowded environments, propagation paths are frequently shadowed by moving objects, such as pedestrians or vehicles. These shadowing effects can cause time variations in the delay and angle-of-arrival (AoA) characteristics of a channel. In this paper, we propose a method for modeling the shadowing effects of pedestrians in a cluster-based channel model. The proposed method uses cluster power variations to model the time-varying channel properties. We also propose a novel method for estimating the cluster power variation properties from measured data. In order to validate our proposed method, channel sounding in the 3GHz band is conducted in a cafeteria during lunchtime. The results for the K parameter, delay spreads, and AoA azimuth spreads are compared for the measured data and the channel data generated using the proposed method. The results indicate that the time-varying delay-AoA characteristics can be effectively modeled using our proposed method.

  • Experimental Study on Battery-Less Sensor Network Activated by Multi-Point Wireless Energy Transmission

    Daiki MAEHARA  Gia Khanh TRAN  Kei SAKAGUCHI  Kiyomichi ARAKI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:4
      Page(s):
    905-916

    This paper empirically validates battery-less sensor activation via wireless energy transmission to release sensors from wires and batteries. To seamlessly extend the coverage and activate sensor nodes distributed in any indoor environment, we proposed multi-point wireless energy transmission with carrier shift diversity. In this scheme, multiple transmitters are employed to compensate path-loss attenuation and orthogonal frequencies are allocated to the multiple transmitters to avoid the destructive interference that occurs when the same frequency is used by all transmitters. In our previous works, the effectiveness of the proposed scheme was validated theoretically and also empirically by using just a spectrum analyzer to measure the received power. In this paper, we develop low-energy battery-less sensor nodes whose consumed power and required received power for activation are respectively 142µW and 400µW. In addition, we conduct indoor experiments in which the received power and activation of battery-less sensor node are simultaneously observed by using the developed battery-less sensor node and a spectrum analyzer. The results show that the coverage of single-point and multi-point wireless energy transmission without carrier shift diversity are, respectively, 84.4% and 83.7%, while the coverage of the proposed scheme is 100%. It can be concluded that the effectiveness of the proposed scheme can be verified by our experiments using real battery-less sensor nodes.

  • Experiments Validating the Effectiveness of Multi-Point Wireless Energy Transmission with Carrier Shift Diversity Open Access

    Daiki MAEHARA  Gia Khanh TRAN  Kei SAKAGUCHI  Kiyomichi ARAKI  Minoru FURUKAWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:9
      Page(s):
    1928-1937

    This paper presents a method to seamlessly extend the coverage of energy supply field for wireless sensor networks in order to free sensors from wires and batteries, where the multi-point scheme is employed to overcome path-loss attenuation, while the carrier shift diversity is introduced to mitigate the effect of interference between multiple wave sources. As we focus on the energy transmission part, sensor or communication schemes are out of scope of this paper. To verify the effectiveness of the proposed wireless energy transmission, this paper conducts indoor experiments in which we compare the power distribution and the coverage performance of different energy transmission schemes including conventional single-point, simple multi-point and our proposed multi-point scheme. To easily observe the effect of the standing-wave caused by multipath and interference between multiple wave sources, 3D measurements are performed in an empty room. The results of our experiments together with those of a simulation that assumes a similar antenna setting in free space environment show that the coverage of single-point and multi-point wireless energy transmission without carrier shift diversity are limited by path-loss, standing-wave created by multipath and interference between multiple wave sources. On the other hand, the proposed scheme can overcome power attenuation due to the path-loss as well as the effect of standing-wave created by multipath and interference between multiple wave sources.

  • A Relay Selection Based on Eigenvalue Decomposition for Cooperative Communications in Indoor Ubiquitous Sensor Networks

    Sekchin CHANG  

     
    LETTER

      Vol:
    E93-B No:11
      Page(s):
    2967-2970

    A new best-relay selection scheme is proposed in this letter in order to maintain a reliable cooperative communications for ubiquitous sensor networks in indoor environments. The suggested technique relies on eigenvalue decomposition to select the best relay. The simulation results confirm that the performance of the proposed approach is better than that of the previous scheme in indoor environments.

  • Extensions of the Access Point Allocation Algorithm for Wireless Mesh Networks

    Walaa HASSAN  Nobuo FUNABIKI  Toru NAKANISHI  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E93-B No:6
      Page(s):
    1555-1565

    Previously, we have proposed an access point (AP) allocation algorithm in indoor environments for the Wireless Internet-access Mesh NETwork (WIMNET) using one gateway (GW) to the Internet. WIMNET consists of multiple APs that are connected wirelessly mainly by the Wireless Distribution System (WDS), to expand the coverage area inexpensively and flexibly. In this paper, we present two extensions of this algorithm to enhance the applicability to the large-scale WIMNET. One is the multiple GW extension of the algorithm to increase the communication bandwidth with multiple GWs, where all the rooms in the network field are first partitioned into a set of disjoint GW clusters and then, our previous allocation algorithm is applied to each GW cluster sequentially. The APs in a GW cluster share the same GW. The other is the dependability extension to assure the network function by maintaining the connectivity and the host coverage, even if one link/AP fault occurs, where redundant APs are added to the AP allocation by our previous algorithm. The effectiveness of our proposal in terms of the number of APs and the throughput is verified through simulations using the WIMNET simulator.

  • An Access Point Allocation Algorithm for Indoor Environments in Wireless Mesh Networks

    Tamer FARAG  Nobuo FUNABIKI  Toru NAKANISHI  

     
    PAPER

      Vol:
    E92-B No:3
      Page(s):
    784-793

    As a flexible, cost effective solution for a large-scale access network to the Internet, we have studied the design optimization of the Wireless Internet-access Mesh NETwork (WIMNET). WIMNET consists of multiple access points (APs) that have wireless links between them mainly on the wireless distribution system (WDS). In WIMNET, the links around the Internet gateway can be bottlenecks because every packet passes through it after multihop link activations. Besides, the link quality may be degraded by obstacles in indoor environments. Thus, the proper allocation of APs is essential in WIMNET, so that the communication quality should be ensured while the installation and management cost be minimized. In this paper, we formulate this AP allocation problem for indoor environments in WIMNET with the proof of the NP-completeness of its decision version. Then, we present its two-stage heuristic algorithm composed of the initial greedy allocation and the iterative improvement. The effectiveness of our proposal is verified through extensive simulations in three indoor environments.

  • Multiple Antenna Technology for Indoor Wireless Systems

    Yong Up LEE  Joong-Hoo PARK  

     
    LETTER-Switching

      Vol:
    E85-B No:11
      Page(s):
    2534-2538

    In this study, a new signal model suitable for indoor environments with large angle spread is proposed to improve the performance of indoor wireless communication systems. And antenna array techniques adopted for this model are discussed. It is based on the far-field signal assumption. The optimal beamforming weight vector is obtained by applying the antenna algorithm based on the maximum signal to interference noise ratio criterion to the model. The proposed model is verified using a mathematical analysis and computer simulations.

  • Requirements for Controlling Coverage of 2.4-GHz-Band Wireless LANs by Using Partitions with Absorbing Board

    Yuji MAEDA  Kazuhiro TAKAYA  Nobuo KUWABARA  

     
    PAPER-EMC Simulation

      Vol:
    E83-B No:3
      Page(s):
    525-531

    For a wireless communication system to work effectively without interference, the electromagnetic environment needs to be controlled. We experimentally and analytically investigated the requirements for controlling the electrical field strength and delay spread so as to achieve the best communication without electromagnetic interference in selected regions for a 2.4-GHz-band wireless LAN system. To control the coverage, partitions were placed around desks in a test environment and covered on the inside with electromagnetic absorbing board from the top of the desks to the top of the partitions; four indoor environments that combined one of two wall-material types and one of two partition heights were used. The transmission loss and delay spread were measured, then calculated using ray tracing to verify the effectiveness of using ray-tracing calculation. The throughput and BER characteristics were measured for the same environments to clarify the requirements for controlling the coverage. We found that covered and uncovered regions could be created by using partitions with absorbing boards and that the delay spread must be less than 15 ns and the received-signal must be stronger than -75 dBm for a region to be covered. We verified that the delay spread can be calculated to within 5 ns and the received-signal level can be calculated to within 5 dB of the measured data by using ray tracing. Therefore, ray tracing can be used to design antenna positions and indoor environments where electromagnetic environments are controlled for 2.4-GHz-band wireless LAN systems.

  • Experimental Investigation of Propagation Characteristics and Performance of 2.4-GHz ISM-Band Wireless LAN in Various Indoor Environments

    Yuji MAEDA  Kazuhiro TAKAYA  Nobuo KUWABARA  

     
    PAPER-Electromagnetic Compatibility

      Vol:
    E82-B No:10
      Page(s):
    1677-1683

    Wireless communication systems are affected by several factors in the indoor environment. The complexity of this environment, however, has hampered the development of methods for analyzing it. Reported here is our investigation of the relationship between the propagation characteristics and performance of a 2.4-GHz ISM-band wireless LAN in various indoor environments. Our objective was to develop guidelines for designing ideal indoor environments for wireless LANs. A booth constructed of a ceiling, floor, and wall materials that could be changed was used for our investigation. The transmission loss and delay spread were measured for four environments; they were calculated by using a ray-tracing method to verify the effectiveness of the ray tracing calculation. The throughput and BER characteristics were measured for the same environments. The following results were obtained. (1) The transmission loss and delay spread could be estimated by using this ray tracing method because the deviations between the calculated and measured data were within 5 dB for the transmission loss and within 10 ns for the delay spread. (2) Reflections from the walls caused a serious interference problem: throughput was 0.0 at more than 30% of the positions along the center line of the booth when the walls were constructed of high-reflection-coefficient material. (3) The throughput and BER were closely correlated with the delay spread; the number of positions meeting a certain throughput was estimated by the method based on the delay spread calculated using the ray tracing method. It was within 10% of the number measured. The results obtained can be used to design ideal indoor environments for 2.4-GHz ISM-band LAN systems.