The search functionality is under construction.

Author Search Result

[Author] Yukihiko OKUMURA(35hit)

1-20hit(35hit)

  • 1. 92 Mbps Data Transmission Experiments over a Coherent W-CDMA Radio Link

    Koichi OKAWA  Yukihiko OKUMURA  Mamoru SAWAHASHI  Fumiyuki ADACHI  

     
    PAPER

      Vol:
    E81-B No:7
      Page(s):
    1330-1336

    Experimental results of 1. 92 Mbps data transmission over a 20 MHz wideband DS-CDMA (W-CDMA) mobile radio link under frequency selective multipath fading are presented. 1. 92 Mbps data were transmitted using an orthogonal multicode transmission scheme. The combined use of antenna diversity reception, RAKE combining, and concatenated channel coding is applied to improve transmission performance. Laboratory and field experimental results demonstrated the possibility of 2 Mbps data transmission in a real fading environment.

  • Performance Investigation on Cell Selection Schemes Associated with Downlink Inter-Cell Interference Coordination in Heterogeneous Networks for LTE-Advanced

    Yuya SAITO  Jaturong SANGIAMWONG  Nobuhiko MIKI  Satoshi NAGATA  Tetsushi ABE  Yukihiko OKUMURA  

     
    PAPER

      Vol:
    E94-B No:12
      Page(s):
    3304-3311

    In Long-Term Evolution (LTE)-Advanced, a heterogeneous network in which femtocells and picocells overlay macrocells is being extensively discussed in addition to traditional well-planned macrocell deployment to improve further the system throughput. In heterogeneous network deployment, cell selection as well as inter-cell interference coordination (ICIC) is very important to improve the system and cell-edge throughput. Therefore, this paper investigates three cell selection methods associated with ICIC in heterogeneous networks in the LTE-Advanced downlink: Signal-to-interference plus noise power ratio (SINR)-based cell selection, reference signal received power (RSRP)-based cell selection, and reference signal received quality (RSRQ)-based cell selection. The results of simulations (4 picocells and 25 sets of user equipment are uniformly located within 1 macrocell) that assume a full buffer model show that the downlink cell and cell-edge user throughput levels of RSRP-based cell selection are degraded by approximately 2% and 11% compared to those for SINR-based cell selection under the condition of maximizing the cell-edge user throughput due to the impairment of the interference level. Furthermore, it is shown that the downlink cell-edge user throughput of RSRQ-based cell selection is improved by approximately 5%, although overall cell throughput is degraded by approximately 6% compared to that for SINR-based cell selection under the condition of maximizing the cell-edge user throughput.

  • Variable-Rate Data Transmission with Blind Rate Detection for Coherent DS-CDMA Mobile Radio

    Yukihiko OKUMURA  Fumiyuki ADACHI  

     
    PAPER

      Vol:
    E81-B No:7
      Page(s):
    1365-1373

    Variable-rate data transmission with no rate indicator is described for direct sequence code division multiple access (DS-CDMA) mobile radio. The variable-rate data to be transmitted is block-encoded using a cyclic redundancy check (CRC) and then convolutionally encoded before being spread. The convolutionally encoded data is always brought to the zero state at the end of the data sequence within each frame. Blind rate detection is incorporated into the process of Viterbi-decoding the received convolutional-coded frame data. At each possible end bit position (i. e. , each possible transmission rate), the trellis path arriving at the zero-state is selected if its path metric satisfies a certain condition, and is then traced back to recover the frame data. CRC is used to determine whether the recovered data is correct or not. The path selection condition is described. The average frame error rate (FER) and average false detection rate (FDR) are evaluated by computer simulation under frequency selective multipath Rayleigh fading environments and the results are compared with another variable-rate transmission scheme using a rate indicator.

  • Real-Time Video Streaming Based on TFRC Using Communication Logging for 5G HetNet

    Takumi HIGUCHI  Hideki SHINGU  Noriyuki SHIMIZU  Takeshi MIYAGOSHI  Hiroaki ASANO  Yoshifumi MORIHIRO  Yukihiko OKUMURA  

     
    PAPER

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1538-1546

    The fifth-generation (5G) mobile communication system is being researched and developed for launch as a commercial service in 2020. The 5G mobile network will include many radio access technologies, such as LTE, 5G NR, and WLAN. Therefore, a user equipment (UE) will be connected to different types of base stations as it moves within a 5G heterogeneous network. Accordingly, it is assumed that the throughput will change with each change in the serving cell. The 5G mobile network is expected to serve large capacity contents, such as 4K videos. However, a conventional video streaming method cannot effectively use the available bandwidth in a 5G heterogeneous network. In this study, we propose a sending rate adaptation method based on predictions for the available bandwidth. In the proposed method, the available bandwidth is predicted from the communication log data. The communication logging database, including past throughput with its location, is created by a UE. A UE refers to the communication log data for predictions when the serving cell is likely to change. We develop a video streaming device that implements the proposed method and evaluates its performance. The results show that the proposed method can change the sending rate and resolution according to the available bandwidth. The proposed method increases the probability of transmitting high-resolution video, which is not possible with conventional methods. Moreover, we performed subjective evaluation of the transmitted video by the proof-of-concept test. The result of the subjective evaluation shows that the proposed method improves the quality of experience for video streaming.

  • Performance Evaluation of Low Complexity Digital Beamforming Algorithms by Link-Level Simulations and Outdoor Experimental Trials for 5G Low-SHF-Band Massive MIMO

    Tatsuki OKUYAMA  Satoshi SUYAMA  Jun MASHINO  Kazushi MURAOKA  Kohei IZUI  Kenichiro YAMAZAKI  Yukihiko OKUMURA  

     
    PAPER

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1382-1389

    The beamforming (BF) provided by Massive MIMO is a promising technique for the fifth-generation (5G) mobile communication system. In low SHF bands such as 3-6GHz, fully digital Massive MIMO can be a feasible option. Previous works proposed eigenvector zero-forcing (E-ZF) as a digital precoding algorithm to lower the complexity of block diagonalization (BD). On the other hand, another previous work aiming to reduce complexity of BD due to the number of antenna elements proposed digital fixed BF and channel-state-information based precoding (Digital FBCP) with BD whose parameter is the number of beams. Moreover, in order to lower the complexity of the Digital FBCP with BD while retaining the transmission performance, this paper proposes Digital FBCP with E-ZF as a lower complexity digital BF algorithm. The pros and cons of these digital BF algorithms in terms of transmission performance and computational complexity are clarified to select the most appropriate algorithm for the fully digital Massive MIMO. Furthermore, E-ZF can be implemented to 4.5GHz-band fully digital Massive MIMO equipment only when the number of antenna elements is less than or equal to 64, and thus 5G experimental trial employing E-ZF was carried out in Tokyo, Japan where early 5G commercial services will launch. To the best of our knowledge, this was the first outdoor experiment on 4.5GHz-ban Massive MIMO in a dense urban area. An outdoor experiment in a rural area was also carried out. This paper shows both a coverage performance under the single user condition and system throughput performance under a densely deployed four-user condition in the outdoor experimental trials employing the E-ZF algorithm. We reveal that, in the MU-MIMO experiment, the measured system throughput is almost 80% of the maximum system throughput even if users are closely located in the dense urban area thanks to the E-ZF algorithm.

  • Cluster Power Variation Characteristics for 3GHz-Band MIMO Communication System in a Crowded Indoor Environment

    Kentaro SAITO  Tetsuro IMAI  Koshiro KITAO  Yukihiko OKUMURA  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:5
      Page(s):
    1131-1142

    In recent years, multiple-input multiple-output (MIMO) channel models for crowded areas, such as indoor offices, shops, and outdoor hotspot environments, have become a topic of significant interest. In such crowded environments, propagation paths are frequently shadowed by moving objects, such as pedestrians or vehicles. These shadowing effects can cause time variations in the delay and angle-of-arrival (AoA) characteristics of a channel. In this paper, we propose a method for modeling the shadowing effects of pedestrians in a cluster-based channel model. The proposed method uses cluster power variations to model the time-varying channel properties. We also propose a novel method for estimating the cluster power variation properties from measured data. In order to validate our proposed method, channel sounding in the 3GHz band is conducted in a cafeteria during lunchtime. The results for the K parameter, delay spreads, and AoA azimuth spreads are compared for the measured data and the channel data generated using the proposed method. The results indicate that the time-varying delay-AoA characteristics can be effectively modeled using our proposed method.

  • Dynamic Channel Modeling Using Particle Filtering for Wireless MIMO Systems in Urban Environment

    Kentaro SAITO  Koshiro KITAO  Tetsuro IMAI  Yukihiko OKUMURA  

     
    PAPER-Radio Propagation

      Vol:
    E96-B No:10
      Page(s):
    2372-2379

    MIMO transmission technologies have become an essential component of cellular systems such as Long Term Evolution (LTE) and LTE-Advanced. Recently, evaluating the communication performance of mobile users in cellular MIMO systems has become an urgent requirement. In this paper, we propose dynamic MIMO channel modeling for the urban environment. Our proposal is based on Geometry-based Stochastic Channel Modeling (GSCM). The cluster parameters such as the local scatterer locations around the measurement course are estimated by applying the particle filtering to measured data. We carried out radio propagation measurements in an urban environment at 3.35GHz band, and generated the dynamic channel from the measured data. The experiments showed that both the spreads and auto-correlation of Time of Arrival (ToA), Angle of Arrival (AoA) and Angle of Departure (AoD) were reconstructed within the acceptable error range in our dynamic channel model.

  • 28 GHz-Band Experimental Trial Using the Shinkansen in Ultra High-Mobility Environment for 5G Evolution

    Nobuhide NONAKA  Kazushi MURAOKA  Tatsuki OKUYAMA  Satoshi SUYAMA  Yukihiko OKUMURA  Takahiro ASAI  Yoshihiro MATSUMURA  

     
    PAPER

      Pubricized:
    2021/04/01
      Vol:
    E104-B No:9
      Page(s):
    1000-1008

    In order to enhance the fifth generation (5G) mobile communication system further toward 5G Evolution, high bit-rate transmission using high SHF bands (28GHz or EHF bands) should be more stable even in high-mobility environments such as high speed trains. Of particular importance, dynamic changes in the beam direction and the larger Doppler frequency shift can degrade transmission performances in such high frequency bands. Thus, we conduct the world's first 28 GHz-band 5G experimental trial on an actual Shinkansen running at a speed of 283km/h in Japan. This paper introduces the 28GHz-band experimental system used in the 5G experimental trial using the Shinkansen, and then it presents the experimental configuration in which three base stations (BSs) are deployed along the Tokaido Shinkansen railway and a mobile station is located in the train. In addition, transmission performances measured in this ultra high-mobility environment, show that a peak throughput of exceeding 1.0Gbps and successful consecutive BS connection among the three BSs.

  • Base Station Cooperation Technologies Using 28GHz-Band Digital Beamforming in High-Mobility Environments Open Access

    Tatsuki OKUYAMA  Nobuhide NONAKA  Satoshi SUYAMA  Yukihiko OKUMURA  Takahiro ASAI  

     
    PAPER

      Pubricized:
    2021/03/23
      Vol:
    E104-B No:9
      Page(s):
    1009-1016

    The fifth-generation (5G) mobile communications system initially introduced massive multiple-input multiple-output (M-MIMO) with analog beamforming (BF) to compensate for the larger path-loss in millimeter-wave (mmW) bands. To solve a coverage issue and support high mobility of the mmW bands, base station (BS) cooperation technologies have been investigated in high-mobility environments. However, previous works assume one mobile station (MS) scenario and analog BF that does not suppress interference among MSs. In order to improve system performance in the mmW bands, fully digital BF that includes digital precoding should be employed to suppress the interference even when MSs travel in high mobility. This paper proposes two mmW BS cooperation technologies that are inter-baseband unit (inter-BBU) and intra-BBU cooperation for the fully digital BF. The inter-BBU cooperation exploits two M-MIMO antennas in two BBUs connected to one central unit by limited-bandwidth fronthaul, and the intra-BBU cooperates two M-MIMO antennas connected to one BBU with Doppler frequency shift compensation. This paper verifies effectiveness of the BS cooperation technologies by both computer simulations and outdoor experimental trials. First, it is shown that that the intra-BBU cooperation can achieve an excellent transmission performance in cases of two and four MSs moving at a velocity of 90km/h by computer simulations. Second, the outdoor experimental trials clarifies that the inter-BBU cooperation maintains the maximum throughput in a wider area than non-BS cooperation when only one MS moves at a maximum velocity of 120km/h.

  • Path Loss Model for Outdoor-to-Indoor Corridor Up to 40GHz Band in Microcell Environments

    Minoru INOMATA  Motoharu SASAKI  Wataru YAMADA  Takeshi ONIZAWA  Masashi NAKATSUGAWA  Nobutaka OMAKI  Koshiro KITAO  Tetsuro IMAI  Yukihiko OKUMURA  

     
    PAPER

      Vol:
    E100-B No:2
      Page(s):
    242-251

    This paper proposed that a path loss model for outdoor-to-indoor corridor is presented to construct next generation mobile communication systems. The proposed model covers the frequency range of millimeter wave bands up to 40GHz and provides three dimensional incident angle characteristics. Analysis of path loss characteristics is conducted by ray tracing. We clarify that the paths reflected multiple times between the external walls of buildings and then diffracted into one of the buildings are dominant. Moreover, we also clarify how the paths affect the path loss dependence on frequency and three dimensional incident angle. Therefore, by taking these dependencies into consideration, the proposed model decreases the root mean square errors of prediction results to within about 2 to 6dB in bands up to 40GHz.

  • Two-Step User Selection Algorithm in Multi-User Massive MIMO with Hybrid Beamforming for 5G Evolution

    Nobuhide NONAKA  Satoshi SUYAMA  Tatsuki OKUYAMA  Kazushi MURAOKA  Yukihiko OKUMURA  

     
    PAPER

      Pubricized:
    2021/04/07
      Vol:
    E104-B No:9
      Page(s):
    1089-1096

    In order to realize the higher bit rates compared for the fifth-generation (5G) mobile communication system, massive MIMO technologies in higher frequency bands with wider bandwidth are being investigated for 5G evolution and 6G. One of practical method to realize massive MIMO in the high frequency bands is hybrid beamforming (BF). With this approach, user selection is an important function because its performance is highly affected by inter-user interference. However, the computational complexity of user selection in multi-user massive MIMO is high because MIMO channel matrix size excessive. Furthermore, satisfying user fairness by proportional fairness (PF) criteria leads to further increase of the complexity because re-calculation of precoding and postcoding matrices is required for each combination of selected users. To realize a fair and low-complexity user selection algorithm for multi-user massive MIMO employing hybrid BF, this paper proposes a two-step user selection algorithm that combines PF based user selection and chordal distance user selection. Computer simulations show that the proposed two-step user selection algorithm with higher user fairness and lower computational complexity can achieve higher system performance than the conventional user selection algorithms.

  • Experimental Study on Ray Based Spatio-Temporal Channel Characteristics in Indoor Environment

    Koshiro KITAO  Tetsuro IMAI  Kentaro SAITO  Yukihiko OKUMURA  

     
    PAPER

      Vol:
    E98-B No:5
      Page(s):
    798-805

    This paper describes characteristics of direct and scattered waves that are extracted from measurement channel data obtained using a 3.35GHz vector channel sounder in an indoor environment. For the scattered waves, a ray number, n, is assigned to each ray in order of the received levels and the relationship between n and the characteristics of each ray such as the received level, delay and azimuth angle of arrival (AOA) are investigated. The distribution of the received level for each n, which is normalized to the received level that is calculated based on free space at each measurement point and includes the received level of all measurement points, is a log normal distribution. Moreover, the median received level of each n of the scattered waves is approximated with two different gradient linear lines as a function of n. Furthermore, the azimuth AOA for the ray of scattered waves whose received level is relatively high is biased in the base station antenna direction and the distribution of the azimuth AOA becomes uniform with a decrease in the received ray level. Finally, a spatio-temporal channel model is proposed based on the above mentioned analysis.

  • 5G Distributed Massive MIMO with Ultra-High Density Antenna Deployment in Low SHF Bands

    Tatsuki OKUYAMA  Satoshi SUYAMA  Jun MASHINO  Yukihiko OKUMURA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/03/10
      Vol:
    E100-B No:10
      Page(s):
    1921-1927

    In order to tackle rapidly increasing traffic, dramatic performance enhancements in radio access technologies (RATs) are required for fifth-generation (5G) mobile communication system. In 5G, small/semi-macro cells using Massive MIMO (M-MIMO) with much wider bandwidth in higher frequency bands are overlaid on macro cell with existing frequency band. Moreover, high density deployment of small/semi-macro cell is expected to improve areal capacity. However, in low SHF band (below 6GHz), antenna array size of M-MIMO is large so that it cannot be installed on some environments. Therefore, to improve system throughput on various use cases in 5G, we have proposed distributed Massive MIMO (DM-MIMO). DM-MIMO coordinates lots of distributed transmission points (TPs) that are located in ultra-high density (UHD). Furthermore, DM-MIMO uses various numbers of antenna elements for each TP. In addition, DM-MIMO with UHD-TPs can create user-centric virtual cells corresponding to user mobility, and design of flexible antenna deployment for DM-MIMO is applicable to various use cases. Then, some key parameters such as the number of the distributed TPs, the number of antenna elements for each TP, and proper distance between TPs, should be determined. This paper presents such parameters for 5G DM-MIMO with flexible antenna deployment under fixed total transmission power and constant total number of antenna elements. Computer simulations show that DM-MIMO can achieve more than 1.9 times higher system throughput than an M-MIMO system using 128 antenna elements.

  • Radio Propagation Prediction Method Using Point Cloud Data Based on Hybrid of Ray-Tracing and Effective Roughness Model in Urban Environments

    Minoru INOMATA  Tetsuro IMAI  Koshiro KITAO  Yukihiko OKUMURA  Motoharu SASAKI  Yasushi TAKATORI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/07/10
      Vol:
    E102-B No:1
      Page(s):
    51-62

    This paper proposes a radio propagation prediction method that uses point cloud data based on a hybrid of the ray-tracing (RT) method and an effective roughness (ER) model in urban environments for the fifth generation mobile communications system using high frequency bands. The proposed prediction method incorporates propagation characteristics that consider diffuse scattering from surface irregularities. The validity of the proposed method is confirmed by comparisons of measurement and prediction results gained from the proposed method and a conventional RT method based on power delay and angular profiles. From predictions based on the power delay and angular profiles, we find that the proposed method, assuming the roughness of σh=1mm, accurately predicts the propagation characteristics in the 20GHz band for urban line-of-sight environments. The prediction error for the delay spread is 2.1ns to 9.7ns in an urban environment.

  • Performance Evaluation of Downlink Multi-User Massive MIMO with Configurable Active Antenna System and Inter Access Point Coordination in Low-SHF-Band Open Access

    Yi JIANG  Kenichiro YAMAZAKI  Toshihiro HAYATA  Kohei IZUI  Kanada NAKAYASU  Toshifumi SATO  Tatsuki OKUYAMA  Jun MASHINO  Satoshi SUYAMA  Yukihiko OKUMURA  

     
    PAPER

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1401-1410

    Massive multiple input and multiple output (Massive MIMO) is a key technique to achieve high system capacity and user data rate for the fifth generation (5G) radio access network (RAN). To implement Massive MIMO in 5G, how much Massive MIMO meets our expectation with various user equipment (UEs) in different environments should be carefully addressed. We focused on using Massive MIMO in the low super-high-frequency (SHF) band, which is expected to be used for 5G commercial bands relatively soon. We previously developed a prototype low-SHF-band centralized-RAN Massive MIMO system that has a flexible active antenna system (AAS)-unit configuration and facilitates advanced radio coordination features, such as coordinated beamforming (CB) coordinated multi-point (CoMP). In this study, we conduct field trials to evaluate downlink (DL) multi-user (MU)-MIMO performance by using our prototype system in outdoor and indoor environments. The results indicate that about 96% of the maximum total DL system throughput can be achieved with 1 AAS unit outdoors and 2 AAS units indoors. We also investigate channel capacity based on the real propagation channel estimation data measured by the prototype system. Compared with without-CB mode, the channel capacity of with-CB mode increases by a maximum of 80% and 104%, respectively, when the location of UEs are randomly selected in the outdoor and indoor environments. Furthermore, the results from the field trial of with-CB mode with eight UEs indicate that the total DL system throughput and user data rate can be significantly improved.

  • Experimental Study of Large-Scale Coordinated Multi-User MIMO for 5G Ultra High-Density Distributed Antenna Systems

    Takaharu KOBAYASHI  Masafumi TSUTSUI  Takashi DATEKI  Hiroyuki SEKI  Morihiko MINOWA  Chiyoshi AKIYAMA  Tatsuki OKUYAMA  Jun MASHINO  Satoshi SUYAMA  Yukihiko OKUMURA  

     
    PAPER

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1390-1400

    Fifth-generation mobile communication systems (5G) must offer significantly higher system capacity than 4G in order to accommodate the rapidly increasing mobile data traffic. Cell densification has been considered an effective way to increase system capacity. Unfortunately, each user equipment (UE) will be in line-of-sight to many more transmission points (TPs) and the resulting inter-cell interference will degrade system capacity. We propose large-scale coordinated multi-user multiple-input multiple-output (LSC-MU-MIMO), which combines MU-MIMO with joint transmission from all the TPs connected to a centralized baseband unit. We previously investigated the downlink performance of LSC-MU-MIMO by computer simulation and found that it can significantly reduce inter-TP interference and improve the system capacity of high-density small cells. In this paper, we investigate the throughput of LSC-MU-MIMO through an indoor trial where the number of coordinated TPs is up to sixteen by using an experimental system that can execute real-time channel estimation based on TDD reciprocity and real-time data transmission. To clarify the improvement in the system capacity of LSC-MU-MIMO, we compared the throughput measured in the same experimental area with and without coordinated transmission in 4-TP, 8-TP, and 16-TP configurations. The results show that with coordinated transmission the system capacity is almost directly proportional to the number of TPs.

  • Further Results on Field Experiments of Coherent Wideband DS-CDMA Mobile Radio

    Tomohiro DOHI  Yukihiko OKUMURA  Fumiyuki ADACHI  

     
    PAPER-Mobile Communication

      Vol:
    E81-B No:6
      Page(s):
    1239-1247

    Field experiments using the 2 GHz carrier frequency band were conducted nearby Tokyo to evaluate the effect of joint use of Rake combining and antenna diversity and also the effect of spreading chip rate (or bandwidth) on the achievable bit error rate (BER) performance and the mobile station transmit power distribution of power controlled coherent DS-CDMA reverse-link (mobile-to-base). Four chip rates, 0. 96, 1. 92, 3. 84, and 7. 68 Mcps, were used. The command interval and power step size of the fast transmission power control (TPC) used in the experiments, 1. 25 ms and 1 dB, respectively, were based on measurements of signal-to-interference plus background noise power ratio (SIR) after Rake combining. The field experiments demonstrate that the joint use of antenna diversity and Rake combining significantly improves the BER performance and, furthermore, that increasing the chip rate improves the BER performance and decreases the transmit power because of enhanced Rake combining through an increase in the number of resolved paths.

  • Experimental Trial of 5G Super Wideband Wireless Systems Using Massive MIMO Beamforming and Beam Tracking Control in 28GHz Band

    Tatsunori OBARA  Tatsuki OKUYAMA  Yuki INOUE  Yuuichi AOKI  Satoshi SUYAMA  Jaekon LEE  Yukihiko OKUMURA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/02/08
      Vol:
    E100-B No:8
      Page(s):
    1256-1268

    This paper presents some results of an experimental trial for the 5th generation (5G) wireless communication systems using 28GHz band. In order to tackle rapidly increasing traffic for 2020 and beyond, new radio access networks for the 5G mobile communication systems will introduce the use of higher frequency bands such as spectra higher than 10GHz to achieve higher capacity and super high bit rate transmission of several tens of Gbps. The target of this experimental trial is to evaluate the feasibility of using the 28GHz band with super-wide bandwidth of 800MHz for 5G wireless communication systems. To compensate large path-loss in higher frequency, the beamforming (BF) based on Massive multiple-input multiple-output (MIMO) is one of promising techniques and can be combined with spatial multiplexing of multiple data streams to achieve much higher capacity. In addition, to support the mobility of mobile station (MS), beam tracking technique is important. In this trial, we first conduct a basic experiment of single-stream transmission by using prototype system with base station (BS) having 96-element antenna and MS having 8-element antenna to evaluate the effectiveness of joint transmitter/receiver BF in 28GHz band in terms of coverage, impact of path loss, shadowing loss and penetration loss under indoor, outdoor and outdoor-to-indoor (O-to-I) environments. We show that by using 28 GHz band with BF based on Massive MIMO, higher throughput near 1.2Gbps can be achieved at many points in the indoor environment. It is also shown that the throughput of over 1Gbps can be achieved at points around 200m distant from BS in outdoor line-of-site (LOS) environment. Secondly, to evaluate the effectiveness of spatial multiplexing and beam tracking under more realistic environment, we also conduct the outdoor experiment of BF combined with 2-stream spatial multiplexing in high mobility environment with MS speed of up to 60km/h by using smartphone-shape MS antenna. We also show that maximum throughput of 3.77Gbps can be achieved with MS speed of 60km/h by using BF with 2-stream multiplexing and beam tracking.

  • Joint Processing of Analog Fixed Beamforming and CSI-Based Precoding for Super High Bit Rate Massive MIMO Transmission Using Higher Frequency Bands

    Tatsunori OBARA  Satoshi SUYAMA  Jiyun SHEN  Yukihiko OKUMURA  

     
    PAPER

      Vol:
    E98-B No:8
      Page(s):
    1474-1481

    In order to tackle the rapidly increasing traffic, the 5th generation (5G) mobile communication system will introduce small cells using higher frequency bands with wider bandwidth to achieve super high bit rate transmission of several tens of Gbps. Massive multiple input multiple output (MIMO) beamforming (BF) is promising as one of the technologies that can compensate for larger path-loss in the higher frequency bands. Joint analog fixed BF and digital precoding have been proposed to reduce the cost of a Massive MIMO transceiver. However, the conventional scheme assumes the transmission of a few streams using well-known codebook-based precoding as the digital precoding, and both a selection method of the fixed BF weights and a digital precoder design, which are suitable for super high bit rate transmission using multiple streams, have not been studied. This paper proposes a joint fixed BF and CSI-based precoding (called FBCP) scheme for the 5G Massive MIMO systems. FBCP first selects the analog fixed BF weights based on a maximum total received power criterion, and then it calculates an eigenmode (EM) precoding matrix by exploiting CSI. This paper targets a 5G system achieving over 20Gbps in the 20GHz band as one example. Throughput performances of the Massive MIMO using the proposed FBCP are evaluated by link level simulations using adaptive modulation and coding and it is shown that the proposed FBCP with the optimum number of selected beams (baseband chains) can use higher level modulation, up to 256QAM, and higher coding rates and achieve throughputs close to 30Gbps while the cost and complexity can be reduced compared with the fully digital Massive MIMO.

  • Scattering Characteristics of the Human Body in 67-GHz Band

    Ngochao TRAN  Tetsuro IMAI  Koshiro KITAO  Yukihiko OKUMURA  Takehiro NAKAMURA  Hiroshi TOKUDA  Takao MIYAKE  Robin WANG  Zhu WEN  Hajime KITANO  Roger NICHOLS  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/12/15
      Vol:
    E101-B No:6
      Page(s):
    1434-1442

    The fifth generation (5G) system using millimeter waves is considered for application to high traffic areas with a dense population of pedestrians. In such an environment, the effects of shadowing and scattering of radio waves by human bodies (HBs) on propagation channels cannot be ignored. In this paper, we clarify based on measurement the characteristics of waves scattered by the HB for typical non-line-of-sight scenarios in street canyon environments. In these scenarios, there are street intersections with pedestrians, and the angles that are formed by the transmission point, HB, and reception point are nearly equal to 90 degrees. We use a wide-band channel sounder for the 67-GHz band with a 1-GHz bandwidth and horn antennas in the measurements. The distance parameter between antennas and the HB is changed in the measurements. Moreover, the direction of the HB is changed from 0 to 360 degrees. The evaluation results show that the radar cross section (RCS) of the HB fluctuates randomly over the range of approximately 20dB. Moreover, the distribution of the RCS of the HB is a Gaussian distribution with a mean value of -9.4dBsm and the standard deviation of 4.2dBsm.

1-20hit(35hit)