The search functionality is under construction.

Author Search Result

[Author] Satoshi NAGATA(20hit)

1-20hit
  • Accurate FFT Processing Window Timing Detection Based on Maximum SIR Criterion in OFCDM Wireless Access

    Satoshi NAGATA  Noriyuki MAEDA  Hiroyuki ATARASHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E88-B No:2
      Page(s):
    552-560

    This paper proposes an accurate Fast Fourier Transform (FFT) window timing detection method based on the maximum signal-to-interference power ratio (SIR) criterion taking into account the received signal and inter-symbol interference power according to different detected FFT window timings in Orthogonal Frequency and Code Division Multiplexing (OFCDM) wireless access. In the proposed method, the SIR of the received signal is estimated using the desired signal power and inter-symbol interference power calculated based on the power delay profile, which is measured by the cross-correlation between the pilot symbol replica and the received signal. Furthermore, since the SIR is calculated only for the received path timing of the first path and those paths exceeding the guard interval duration, the computational complexity of the proposed method is low. Computer simulation results show that the proposed scheme reduces the required average received signal energy per symbol-to-noise power spectrum density ratio (Es/N0) for achieving the average packet error rate of 10-2 by approximately 1.0 dB compared to the conventional method, which detects the forward path timing of the power delay profile (16QAM data modulation, six-path Rayleigh fading channel, and the maximum delay time of 3 µsec (root mean squared (r.m.s.) delay spread of 0.86 µsec)).

  • Physical Cell ID Detection Probability Using NB-IoT Synchronization Signals in 28-GHz Band

    Daisuke INOUE  Kyogo OTA  Mamoru SAWAHASHI  Satoshi NAGATA  

     
    PAPER

      Pubricized:
    2021/03/17
      Vol:
    E104-B No:9
      Page(s):
    1110-1119

    This paper presents the physical-layer cell identity (PCID) detection probability using the narrowband primary synchronization signal (NPSS) and narrowband secondary synchronization signal (NSSS) based on the narrowband Internet-of-Things (NB-IoT) radio interface considering frequency offset and the maximum Doppler frequency in the 28-GHz band. Simulation results show that the autocorrelation based NPSS detection method is more effective than the cross-correlation based NPSS detection using frequency offset estimation and compensation before the NPSS received timing detection from the viewpoints of PCID detection probability and computational complexity. We also show that when using autocorrelation based NPSS detection, the loss in the PCID detection probability at the carrier frequency of fc =28GHz compared to that for fc =3.5GHz is only approximately 5% at the average received signal-to-noise ratio (SNR) of 0dB when the frequency stability of a local oscillator of a user equipment (UE) set is 20ppm. Therefore, we conclude that the multiplexing schemes and sequences of NPSS and NSSS based on the NB-IoT radio interface associated with autocorrelation based NPSS detection will support the 28-GHz frequency spectra.

  • Physical Channel Structures and Cell Search Method for Scalable Bandwidth for OFDM Radio Access in Evolved UTRA Downlink

    Motohiro TANNO  Kenichi HIGUCHI  Satoshi NAGATA  Yoshihisa KISHIYAMA  Mamoru SAWAHASHI  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E90-B No:12
      Page(s):
    3622-3631

    This paper proposes physical channel structures and a cell search method for OFDM based radio access in the Evolved UTRA (UMTS Terrestrial Radio Access) downlink, which supports multiple scalable transmission bandwidths from 1.25 to 20 MHz. In the proposed physical channel structures, the central sub-carrier of the OFDM signal is located on the frequency satisfying the 200-kHz raster condition regardless of the transmission bandwidth of the cell site. Moreover, the synchronization channel (SCH) and broadcast channel (BCH), which are necessary for cell search, are transmitted in the central part of the entire transmission spectrum with a fixed bandwidth. In the proposed cell search method, a user equipment (UE) acquires the target cell in the cell search process in the initial or connected mode employing the SCH and possibly the reference signal, which are transmitted in the central part of the given transmission bandwidth. After detecting the target cell, the UE decodes the common control information through the BCH, which is transmitted at the same frequency as the SCH, and identifies the transmission bandwidth of the cell to be connected. Computer simulations show the fast cell search performance made possible by using the proposed SCH structure and the cell search method.

  • Towards mmWave V2X in 5G and Beyond to Support Automated Driving Open Access

    Kei SAKAGUCHI  Ryuichi FUKATSU  Tao YU  Eisuke FUKUDA  Kim MAHLER  Robert HEATH  Takeo FUJII  Kazuaki TAKAHASHI  Alexey KHORYAEV  Satoshi NAGATA  Takayuki SHIMIZU  

     
    INVITED SURVEY PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2020/11/26
      Vol:
    E104-B No:6
      Page(s):
    587-603

    Millimeter wave provides high data rates for Vehicle-to-Everything (V2X) communications. This paper motivates millimeter wave to support automated driving and begins by explaining V2X use cases that support automated driving with references to several standardization bodies. The paper gives a classification of existing V2X standards: IEEE802.11p and LTE V2X, along with the status of their commercial deployment. Then, the paper provides a detailed assessment on how millimeter wave V2X enables the use case of cooperative perception. The explanations provide detailed rate calculations for this use case and show that millimeter wave is the only technology able to achieve the requirements. Furthermore, specific challenges related to millimeter wave for V2X are described, including coverage enhancement and beam alignment. The paper concludes with some results from three studies, i.e. IEEE802.11ad (WiGig) based V2X, extension of 5G NR (New Radio) toward mmWave V2X, and prototypes of intelligent street with mmWave V2X.

  • Physical Cell ID Detection Probabilities Using Frequency Domain PVS Transmit Diversity for NB-IoT Radio Interface

    Aya SHIMURA  Mamoru SAWAHASHI  Satoshi NAGATA  Yoshihisa KISHIYAMA  

     
    PAPER

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1477-1489

    This paper proposes frequency domain precoding vector switching (PVS) transmit diversity for synchronization signals to achieve fast physical cell identity (PCID) detection for the narrowband (NB)-Internet-of-Things (IoT) radio interface. More specifically, we propose localized and distributed frequency domain PVS transmit diversity schemes for the narrowband primary synchronization signal (NPSS) and narrowband secondary synchronization signal (NSSS), and NPSS and NSSS detection methods including a frequency offset estimation method suitable for frequency domain PVS transmit diversity at the receiver in a set of user equipment (UE). We conduct link-level simulations to compare the detection probabilities of NPSS and NSSS, i.e., PCID using the proposed frequency domain PVS transmit diversity schemes, to those using the conventional time domain PVS transmit diversity scheme. The results show that both the distributed and localized frequency domain PVS transmit diversity schemes achieve a PCID detection probability almost identical to that of the time domain PVS transmit diversity scheme when the effect of the frequency offset due to the frequency error of the UE temperature compensated crystal oscillator (TCXO) is not considered. We also show that for a maximum frequency offset of less than approximately 8 kHz, localized PVS transmit diversity achieves almost the same PCID detection probability. It also achieves a higher PCID detection probability than one-antenna transmission although it is degraded compared to the time domain PVS transmit diversity when the maximum frequency offset is greater than approximately 10 kHz.

  • Performance Evaluations of Transmit Diversity Schemes with Synchronization Signals for LTE Downlink

    Satoshi NAGATA  Yoshihisa KISHIYAMA  Motohiro TANNO  Kenichi HIGUCHI  Mamoru SAWAHASHI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E98-B No:6
      Page(s):
    1110-1124

    This paper presents the effect of transmit diversity on the initial and neighboring cell search time performance and the most appropriate transmit diversity scheme based on system-level simulations employing synchronization signals for the Long Term Evolution (LTE) downlink. The synchronization signals including the primary synchronization signal (PSS) and secondary synchronization signal (SSS) are the first physical channel that a set of user equipment (UE) acquires at the initial radio-link connection. The transmit diversity candidates assumed in the paper are Precoding Vector Switching (PVS), Cyclic Delay Diversity (CDD), Time Switched Transmit Diversity (TSTD), and Frequency Switched Transmit Diversity (FSTD), which are all suitable for simple blind detection at a UE. System-level simulation results show that transmit diversity is effective in improving the detection probabilities of the received PSS timing and PSS sequence in the first step and those of the SSS sequence and radio frame timing in the second step of the cell search process. We also show that PVS achieves fast cell search time performance of less than approximately 20ms at the location probability of 90% regardless of the inter-cell site distance up to 10km. Hence, we conclude that PVS is the best transmit diversity scheme for the synchronization signals from the viewpoint of decreasing the initial and neighboring cell search times.

  • Cellular V2X Standardization in 4G and 5G Open Access

    Shohei YOSHIOKA  Satoshi NAGATA  

     
    INVITED PAPER

      Pubricized:
    2021/11/08
      Vol:
    E105-A No:5
      Page(s):
    754-762

    Recently connected car called Vehicle-to-Everything (V2X) has been attracted for smart automotive mobility. Among V2X technologies, cellular V2X (C-V2X) discussed and specified in 3rd generation partnership project (3GPP) is generally regarded as possibly utilized one. In 3GPP, the fourth generation mobile communication system (4G) and the fifth generation (5G) including new radio (NR) provide C-V2X standards specifications. In this paper, we will introduce C-V2X standards and share our views on future C-V2X.

  • A Study on Extreme Wideband 6G Radio Access Technologies for Achieving 100Gbps Data Rate in Higher Frequency Bands Open Access

    Satoshi SUYAMA  Tatsuki OKUYAMA  Yoshihisa KISHIYAMA  Satoshi NAGATA  Takahiro ASAI  

     
    INVITED PAPER

      Pubricized:
    2021/04/01
      Vol:
    E104-B No:9
      Page(s):
    992-999

    In sixth-generation (6G) mobile communication system, it is expected that extreme high data rate communication with a peak data rate over 100Gbps should be provided by exploiting higher frequency bands in addition to millimeter-wave bands such as 28GHz. The higher frequency bands are assumed to be millimeter wave and terahertz wave where the extreme wider bandwidth is available compared with 5G, and hence 6G needs to promote research and development to exploit so-called terahertz wave targeting the frequency from 100GHz to 300GHz. In the terahertz wave, there are fundamental issues that rectilinearity and pathloss are higher than those in the 28GHz band. In order to solve these issues, it is very important to clarify channel characteristics of the terahertz wave and establish a channel model, to advance 6G radio access technologies suitable for the terahertz wave based on the channel model, and to develop radio-frequency device technologies for such higher frequency bands. This paper introduces a direction of studies on 6G radio access technologies to explore the higher frequency bands and technical issues on the device technologies, and then basic computer simulations in 100Gbps transmission using 100GHz band clarify a potential of extreme high data rate over 100Gbps.

  • Performance Comparison of List Viterbi Algorithm of Tail-Biting Convolutional Code for Future Machine Type Communications

    Shunichi BUSHISUE  Satoshi SUYAMA  Satoshi NAGATA  Nobuhiko MIKI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2017/02/08
      Vol:
    E100-B No:8
      Page(s):
    1293-1300

    In the future, 5G radio access and support for the internet of things (IoT) is becoming more important, which is called machine type communications. Different from current mobile communication systems, machine type communications generates relatively small packets. In order to support such small packets with high reliability, channel coding techniques are inevitable. One of the most effective channel codes in such conditions is the tail-biting convolutional code, since it is used in LTE systems due to its good performance for small packet sizes. By employing a list Viterbi algorithm for the tail-biting convolutional code, the block error rate (BLER) performances is further improved. Therefore, this paper evaluates the BLER performances of several list Viterbi algorithms, i.e., circular parallel list Viterbi algorithm (CPLVA), per stage CPLVA (PSCPLVA), and successive state and sequence estimation (SSSE). In the evaluation, computational complexity is also taken into account. It is shown that the performance of the CPLVA is better in the wide range of computational complexity defined in this paper.

  • Radio Frame Timing Detection Method Using Demodulation Reference Signals Based on PCID Detection for NR Initial Access

    Kyogo OTA  Daisuke INOUE  Mamoru SAWAHASHI  Satoshi NAGATA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2021/12/01
      Vol:
    E105-B No:6
      Page(s):
    775-787

    This paper proposes individual computation processes of the partial demodulation reference signal (DM-RS) sequence in a synchronization signal (SS)/physical broadcast channel (PBCH) block to be used to detect the radio frame timing based on SS/PBCH block index detection for New Radio (NR) initial access. We present the radio frame timing detection probability using the proposed partial DM-RS sequence detection method that is applied subsequent to the physical-layer cell identity (PCID) detection in five tapped delay line (TDL) models in both non-line-of-sight (NLOS) and line-of-sight (LOS) environments. Computer simulation results show that by using the proposed method, the radio frame timing detection probabilities of almost 100% and higher than 90% are achieved for the LOS and NLOS channel models, respectively, at the average received signal-to-noise power ratio (SNR) of 0dB with the frequency stability of a local oscillator in a set of user equipment (UE) of 5ppm at the carrier frequency of 4GHz.

  • Investigation on Data Signal Muting to Improve Channel Estimation Accuracy in Downlink Coordinated Multiple-Point Transmission in LTE-Advanced

    Yusuke OHWATARI  Nobuhiko MIKI  Tetsushi ABE  Satoshi NAGATA  Yukihiko OKUMURA  

     
    PAPER

      Vol:
    E94-B No:12
      Page(s):
    3321-3334

    Accurate channel estimation for multiple cells is essential in downlink coordinated multi-point (CoMP) transmission/reception. Therefore, this paper investigates a technique to improve the channel estimation for downlink CoMP in Long-Term Evolution (LTE)-Advanced. In particular, the performance of data signal muting, i.e., muting data signals that collide with the channel state information reference signal (CSI-RS) of a neighboring cell, is evaluated considering various CoMP schemes and intra-eNodeB and inter-eNodeB CoMP scenarios. In a multi-cell link level simulation, coordinated scheduling and coordinated beamforming (CS/CB) CoMP is employed. The simulation results show that data signal muting is effective in improving the channel estimation accuracy, which is confirmed by numerical analysis. Simulation results also show that it is effective in improving the throughput performance, especially for sets of user equipment at the cell boundary. Furthermore, the tradeoff relationship between accurate channel estimation by muting larger numbers of data signals and a high peak data rate, i.e., low overhead, is investigated. It is shown that when the number of coordinated cells is set to three, the CSI-RS reuse factor is set to three, and the well-planned CSI-RS pattern allocation is employed, the improvement in performance is almost saturated in a synchronized network.

  • Cell Search Time Comparison Using Hierarchical and Non-hierarchical Synchronization Channels in OFDM Based Evolved UTRA Downlink

    Satoshi NAGATA  Motohiro TANNO  Yoshihisa KISHIYAMA  Kenichi HIGUCHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E92-B No:5
      Page(s):
    1608-1618

    This paper presents a comparison of hierarchical and non-hierarchical synchronization channel (SCH) structures in terms of the initial cell search time and neighboring cell search time in order to establish the optimum SCH structure in the Evolved UTRA downlink. Computer simulation results show that in a 19-cell configuration, the cell search time at 90% in the cumulative distribution function (CDF) using the hierarchical SCH structure is less than half that using the non-hierarchical SCH structure in a neighboring cell search under low signal-to-interference plus noise power ratio (SINR) conditions, although both structures achieve almost the same cell search time in the initial cell search. This is due to the cross-correlation based SCH symbol timing detection in the hierarchical SCH structure, which is affected less by noise than the auto-correlation based detection in the non-hierarchical SCH structure. Thus, we conclude that the hierarchical SCH structure is superior to the non-hierarchical SCH structure based on the cell search time performance especially in the neighboring cell search.

  • Low Complexity Centralized Scheduling Scheme for Downlink CoMP

    Jing WANG  Satoshi NAGATA  Lan CHEN  Huiling JIANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:5
      Page(s):
    940-948

    Coordinated multi-point (CoMP) transmission and reception is a promising technique for interference mitigation in cellular systems. The scheduling algorithm for CoMP has a significant impact on the network processing complexity and performance. Performing exhaustive search permits centralized scheduling and thus the optimal global solution; however, it incurs a high level of computational complexity and may be impractical or lead to high cost as well as network instability. In order to provide a more realistic scheduling method while balancing performance and complexity, we propose a low complexity centralized scheduling scheme that adaptively selects users for single-cell transmission or different CoMP scheme transmission to maximize the system weighted sum capacity. We evaluate the computational complexity and system-level simulation performance in this paper. Compared to the optimal scheduling method with exhaustive search, the proposed scheme has a much lower complexity level and achieves near optimal performance.

  • System Performance Investigation of Layer-1 and Layer-3 Relays in LTE-Advanced Downlink

    Satoshi NAGATA  Yuan YAN  Anxin LI  Xinying GAO  Tetsushi ABE  Takehiro NAKAMURA  

     
    PAPER

      Vol:
    E94-B No:12
      Page(s):
    3296-3303

    In Long-Term Evolution (LTE)-Advanced, an important goal in addition to achieving high-speed, high-capacity communications is throughput enhancement for cell-edge users. One solution is to relay radio transmissions between an eNode B and user equipment (UE). Relays are expected to extend the coverage to the cell boundary and coverage hole areas, and are expected to reduce network costs. It was agreed that in Release 10 LTE, a Layer-3 (L3) relay, which achieves self-backhauling of radio signals between an eNode B and a UE in Layer 3 should be standardized. Meanwhile, a Layer-1 (L1) relay, which amplifies and forwards received radio frequency signals, has already found widespread use in second-generation and third-generation mobile communication systems. This paper investigates the downlink system level performance for L3 and L1 relays with orthogonal frequency division multiple access (OFDMA) in LTE-Advanced. Various practical factors are taken into account in the evaluations such as the processing delay and upper bound of the amplifier gain of the L1 relay, capacity limitation of the backhaul channels, and empty buffer status at the L3 relay. We also propose and investigate a downlink backhaul link (radio link between the eNode B and L3 relay node) scheduling method for the in-band half-duplex L3 relay. In the proposed scheduling method, radio resources from an eNode B to an L3 relay node and macro UE are multiplexed in the same backhaul subframe considering the number of relay UEs and macro UEs, and the channel quality of the backhaul link to the L3 relay and the access link to the macro UE. Based on system-level simulations, we clarify the system impact of several conditions for the relay such as the number of relay nodes and the number of backhaul (radio link between eNode B and L3 relay) subframes, the distance between the eNode B and relay, and show the throughput performance gain of the L3 relay compared to the L1 relay. We also clarify that the cell-edge UE throughput performance is increased by approximately 10% by applying the proposed scheduling method due to more efficient and fair resource allocation to the L3 relay and macro UEs.

  • Performance Investigation on Cell Selection Schemes Associated with Downlink Inter-Cell Interference Coordination in Heterogeneous Networks for LTE-Advanced

    Yuya SAITO  Jaturong SANGIAMWONG  Nobuhiko MIKI  Satoshi NAGATA  Tetsushi ABE  Yukihiko OKUMURA  

     
    PAPER

      Vol:
    E94-B No:12
      Page(s):
    3304-3311

    In Long-Term Evolution (LTE)-Advanced, a heterogeneous network in which femtocells and picocells overlay macrocells is being extensively discussed in addition to traditional well-planned macrocell deployment to improve further the system throughput. In heterogeneous network deployment, cell selection as well as inter-cell interference coordination (ICIC) is very important to improve the system and cell-edge throughput. Therefore, this paper investigates three cell selection methods associated with ICIC in heterogeneous networks in the LTE-Advanced downlink: Signal-to-interference plus noise power ratio (SINR)-based cell selection, reference signal received power (RSRP)-based cell selection, and reference signal received quality (RSRQ)-based cell selection. The results of simulations (4 picocells and 25 sets of user equipment are uniformly located within 1 macrocell) that assume a full buffer model show that the downlink cell and cell-edge user throughput levels of RSRP-based cell selection are degraded by approximately 2% and 11% compared to those for SINR-based cell selection under the condition of maximizing the cell-edge user throughput due to the impairment of the interference level. Furthermore, it is shown that the downlink cell-edge user throughput of RSRQ-based cell selection is improved by approximately 5%, although overall cell throughput is degraded by approximately 6% compared to that for SINR-based cell selection under the condition of maximizing the cell-edge user throughput.

  • Block-Wise Resource Block-Level Distributed Transmission for Shared Data Channel in OFDMA Evolved UTRA Downlink

    Satoshi NAGATA  Yoshiaki OFUJI  Yoshihisa KISHIYAMA  Nobuhiko MIKI  Kenichi HIGUCHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E92-B No:5
      Page(s):
    1660-1668

    This paper proposes block-wise resource block (RB)-level distributed OFDMA transmission with ND-block division in order to obtain the frequency diversity effect even for low-rate traffic (here ND indicates the number of virtual RBs within one physical RB) in Evolved UTRA downlink. More specifically, we propose a constraint rule such that distributed transmission is multiplexed into a different physical RB from that of localized transmission in order to achieve the same resource assignment and independent decoding between the distributed and localized transmissions. Based on the proposed rule, a virtual RB for distributed transmission is segmented into ND blocks with the size of 1/ND of the original virtual RB. Then, the ND virtual blocks with the size of 1/ND are mapped together into each ND physical RB in a distributed manner, resulting in a large frequency diversity effect. Numerical calculations show that the block-wise RB-level distributed transmission can reduce the number of control signaling bits required for resource assignment compared to the subcarrier-level distributed transmission scheme, which provides the best performance. Moreover, a system-level simulation shows that the loss in the cell throughput employing the block-wise RB-level distributed transmission compared to that using the subcarrier-level transmission is only within 3-4% when the channel load is 0.5 and 1.0, i.e., the maximum loss is 3-4% at approximately 90% in the cumulative distribution function (CDF).

  • Physical Cell ID Detection Probability Using NR Synchronization Signals in 28-GHz Band

    Kyogo OTA  Mamoru SAWAHASHI  Satoshi NAGATA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/10/22
      Vol:
    E104-B No:4
      Page(s):
    436-445

    This paper presents the physical-layer cell identity (PCID) detection probability using the primary synchronization signal (PSS) and secondary synchronization signal (SSS) for the New Radio (NR) radio interface considering a large frequency offset and high Doppler frequency in multipath Rayleigh fading channels in the 28-GHz band. Simulation results show that cross-correlation based PSS detection after compensating for the frequency offset achieves higher PCID detection probability than autocorrelation based PSS detection at the average received signal-to-noise power ratio (SNR) values below approximately 0dB for the frequency stability of a user equipment (UE) oscillator of ϵ =5ppm. Meanwhile, both methods achieve almost the same PCID detection probability for average received SNR values higher than approximately 0dB. We also show that even with the large frequency offset caused by ϵ =20 ppm, the high PCID detection probability of approximately 90 (97)% and 90 (96)% is achieved for the cross-correlation or autocorrelation based PSS detection method, respectively, at the average received SNR of 0dB for the subcarrier spacing of 120 (240)kHz. We conclude that utilizing the multiplexing scheme for the PSS and SSS and their sequences is effective in achieving a high PCID detection probability considering a large frequency offset even with the frequency deviation of ϵ =20ppm in the 28-GHz band.

  • Physical Cell ID Detection Using Joint Estimation of Frequency Offset and SSS Sequence for NR Initial Access

    Daisuke INOUE  Kyogo OTA  Mamoru SAWAHASHI  Satoshi NAGATA  

     
    PAPER

      Pubricized:
    2021/03/17
      Vol:
    E104-B No:9
      Page(s):
    1120-1128

    This paper proposes a physical-layer cell identity (PCID) detection method that uses joint estimation of the frequency offset and secondary synchronization signal (SSS) sequence for the 5G new radio (NR) initial access with beamforming transmission at a base station. Computer simulation results show that using the PCID detection method with the proposed joint estimation yields an almost identical PCID detection probability as the primary synchronization signal (PSS) detection probability at an average received signal-to-noise ratio (SNR) of higher than approximately -5dB suggesting that the residual frequency offset is compensated to a sufficiently low level for the SSS sequence estimation. It is also shown that the PCID detection method achieves a high PCID detection probability of greater than 90% and 50% at the carrier frequency of 30 and 50GHz, respectively, at the average received SNR of 0dB for the frequency stability of a user equipment oscillator of 3ppm.

  • Investigation on Non-Orthogonal Multiple Access with Reduced Complexity Maximum Likelihood Receiver and Dynamic Resource Allocation

    Yousuke SANO  Kazuaki TAKEDA  Satoshi NAGATA  Takehiro NAKAMURA  Xiaohang CHEN  Anxin LI  Xu ZHANG  Jiang HUILING  Kazuhiko FUKAWA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/02/08
      Vol:
    E100-B No:8
      Page(s):
    1301-1311

    Non-orthogonal multiple access (NOMA) is a promising multiple access scheme for further improving the spectrum efficiency compared to orthogonal multiple access (OMA) in the 5th Generation (5G) mobile communication systems. As inter-user interference cancellers for NOMA, two kinds of receiver structures are considered. One is the reduced complexity-maximum likelihood receiver (R-ML) and the other is the codeword level interference canceller (CWIC). In this paper, we show that the R-ML is superior to the CWIC in terms of scheduling flexibility. In addition, we propose a link to system (L2S) mapping scheme for the R-ML to conduct a system level evaluation, and show that the proposed scheme accurately predicts the block error rate (BLER) performance of the R-ML. The proposed L2S mapping scheme also demonstrates that the system level throughput performance of the R-ML is higher than that for the CWIC thanks to the scheduling flexibility.

  • Improvement of Performances of SC Sigma-Delta Modulators

    Kenichi SUGITANI  Fumio UENO  Takahiro INOUE  Takeru YAMASHITA  Satoshi NAGATA  

     
    PAPER-Methods and Circuits for Signal Processing

      Vol:
    E76-A No:6
      Page(s):
    931-939

    Oversampled analog-to-digital (A/D) converters based on sigma-delta (ΣΔ) modulation are attractive for VLSI implementation because they are especially tolertant of circuit nonidealities and component mismatch. Oversampled ΣΔ modulator has some points which must be improved. Some of these problems are based on the small input signal and the integrator leak. In this paper,ΣΔ A/D converter having a dither circuit to improve the linearity and the compensation technique of the integer leak are presented. By the simulation, the most suitable dither to improve the linearity of the modulator is obtained as follows: the amplitude is 1/150 of input signal maximum amplitude, the frequency is 4-times of the signal-band. Using the compensation circuit of the integrator leak, 72 dB of dynamic range is obtained when op-amp gain is 30 dB.