The search functionality is under construction.

Author Search Result

[Author] Yousuke SANO(3hit)

1-3hit
  • Investigation on Non-Orthogonal Multiple Access with Reduced Complexity Maximum Likelihood Receiver and Dynamic Resource Allocation

    Yousuke SANO  Kazuaki TAKEDA  Satoshi NAGATA  Takehiro NAKAMURA  Xiaohang CHEN  Anxin LI  Xu ZHANG  Jiang HUILING  Kazuhiko FUKAWA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/02/08
      Vol:
    E100-B No:8
      Page(s):
    1301-1311

    Non-orthogonal multiple access (NOMA) is a promising multiple access scheme for further improving the spectrum efficiency compared to orthogonal multiple access (OMA) in the 5th Generation (5G) mobile communication systems. As inter-user interference cancellers for NOMA, two kinds of receiver structures are considered. One is the reduced complexity-maximum likelihood receiver (R-ML) and the other is the codeword level interference canceller (CWIC). In this paper, we show that the R-ML is superior to the CWIC in terms of scheduling flexibility. In addition, we propose a link to system (L2S) mapping scheme for the R-ML to conduct a system level evaluation, and show that the proposed scheme accurately predicts the block error rate (BLER) performance of the R-ML. The proposed L2S mapping scheme also demonstrates that the system level throughput performance of the R-ML is higher than that for the CWIC thanks to the scheduling flexibility.

  • Impact on Inter-Cell Interference of Reference Signal for Interference Rejection Combining Receiver in LTE-Advanced Downlink

    Yousuke SANO  Yusuke OHWATARI  Nobuhiko MIKI  Yuta SAGAE  Yukihiko OKUMURA  Yasutaka OGAWA  Takeo OHGANE  Toshihiko NISHIMURA  

     
    PAPER

      Vol:
    E95-B No:12
      Page(s):
    3728-3738

    This paper investigates the dominant impact on the interference rejection combining (IRC) receiver due to the downlink reference signal (RS) based covariance matrix estimation scheme. When the transmission modes using the cell-specific RS (CRS) in LTE/LTE-Advanced are assumed, the property of the non-precoded CRS is different from that of the data signals. This difference poses two problems to the IRC receiver. First, it results in different levels of accuracy for the RS based covariance matrix estimation. Second, assuming the case where the CRS from the interfering cell collides with the desired data signals of the serving cell, the IRC receiver cannot perfectly suppress this CRS interference. The results of simulations assuming two transmitter and receiver antenna branches show that the impact of the CRS-to-CRS collision among cells is greater than that for the CRS interference on the desired data signals especially in closed-loop multiple-input multiple-output (MIMO) systems, from the viewpoint of the output signal-to-interference-plus-noise power ratio (SINR). However, the IRC receiver improves the user throughput by more than 20% compared to the conventional maximal ratio combining (MRC) receiver under the simulation assumptions made in this paper even when the CRS-to-CRS collision is assumed. Furthermore, the results verify the observations made in regard to the impact of inter-cell interference of the CRS for various average received signal-to-noise power ratio (SNR) and signal-to-interference power ratio (SIR) environments.

  • Link Performance Modeling of Interference Rejection Combining Receiver in System Level Evaluation for LTE-Advanced Downlink

    Yousuke SANO  Yusuke OHWATARI  Nobuhiko MIKI  Akihito MORIMOTO  Yukihiko OKUMURA  

     
    PAPER

      Vol:
    E95-B No:12
      Page(s):
    3739-3751

    The interference rejection combining (IRC) receiver, which can suppress inter-cell interference, is effective in improving the cell-edge user throughput. The IRC receiver is typically based on the minimum mean square error (MMSE) criteria, and requires a covariance matrix including the interference signals, in addition to a channel matrix from the serving cell. Therefore, in order to clarify the gain from the IRC receiver, the actual estimation error of these matrices should be taken into account. In a system performance evaluation, the link performance modeling of the IRC receiver, i.e., the output signal-to-interference-plus-noise power ratio (SINR) after IRC reception including the estimation errors, is very important in evaluating the actual performance of the IRC receiver in system level simulations. This is because these errors affect the suppression of the interference signals for the IRC receiver. Therefore, this paper investigates and proposes IRC receiver modeling schemes for the covariance matrix and channel estimation errors. As the modeling scheme for the covariance matrix, we propose a scheme that averages the conventional approximation using the complex Wishart distribution in the frequency domain to address issues that arise in a frequency selective fading channel. Furthermore, we propose a modeling scheme for the channel estimation error according to the ideal channel response of all cells and a channel estimation filter to address channel fading fluctuations. The results of simulations assuming the LTE/LTE-Advanced downlink with two transmitter and receiver antenna branches show that the proposed modeling scheme for the covariance matrix estimation error accurately approximates the performance of a realistic IRC receiver, which estimates the covariance matrix and channel matrix of the serving cell based on the demodulation reference signal (DM-RS), even in a frequency selective fading channel. The results also show that the proposed modeling scheme for the channel estimation error is a robust scheme in terms of the r.m.s. delay spread of a channel model compared to the scheme using the mean square error (MSE) statistic of the estimated channel coefficients based on a channel estimation filter.