1-1hit |
Takeshi ISHIDA Yukihiro TOZAWA Mutsumu TAKAHASHI Fengchao XIAO Yoshio KAMI Osamu FUJIWARA Shuichi NITTA
Electrostatic discharge (ESD) generators cause electromagnetic (EM) noises not only at ESD tests but also even before and after the tests. This may provide inconsistent test results, but the mechanism has not been well examined. To explain the mechanism qualitatively, we investigated a generation source model of EM noises from an ESD generator in conjunction with the functional control sequences of built-in relay switches and the DC high voltage power supply. To validate this model, we used a magnetic field probe to measure the induced EM noises before, during, and after contact and air discharges in accordance with the corresponding timing of the functional control sequences. As a result, we confirmed that the EM noises are induced when the relay switches operate before and at ESD testing and after ESD tests for both contact and air discharges. In addition, we found that the noise peaks due to contact discharges increase with charge voltages, and the peaks just before and at the testing are relatively larger than the ones after the tests, while the peaks of the induced noises at the air discharge testing do not always increase with charge voltages, but reach a maximum at 3kV. In addition, the peaks of the induced noises at the air discharge testing become smaller than either the peaks just before the testing and those after the tests at charge voltages above 6kV. This suggests that the EM noises just before ESD testing and after the test may cause the EUT to malfunction when air discharge tests with charge voltages over 6kV are conducted. A new control sequence of the built-in relay switch was also proposed for reducing the EM noises after ESD tests, which was validated through noise measurements.