The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] inter-block interference(8hit)

1-8hit
  • Filter Design for IBI Suppression in OFDM Based Filter-and-Forward Relay Beamforming

    Satoshi NAGAI  Teruyuki MIYAJIMA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:9
      Page(s):
    2072-2080

    In this paper, we consider filter-and-forward relay beamforming using orthogonal frequency-division multiplexing (OFDM) in the presence of inter-block interference (IBI). We propose a filter design method based on a constrained max-min problem, which aims to suppress IBI and also avoid deep nulls in the frequency domain. It is shown that IBI can be suppressed completely owing to the employment of beamforming with multiple relays or multiple receive antennas at each relay when perfect channel state information (CSI) is available. In addition, we modify the proposed method to cover the case where only the partial CSI for relay-receiver channels is available. Numerical simulation results show that the proposed method significantly improves the performance as the number of relays and antennas increases due to spatial diversity, and the modified method can make use of the channel correlation to improve the performance.

  • Joint Blind Compensation of Inter-Block Interference and Frequency-Dependent IQ Imbalance

    Xi ZHANG  Teruyuki MIYAJIMA  

     
    LETTER

      Vol:
    E99-A No:1
      Page(s):
    196-198

    In this letter, we propose a blind adaptive algorithm for joint compensation of inter-block interference (IBI) and frequency-dependent IQ imbalance using a single time-domain equalizer. We combine the MERRY algorithm for IBI suppression with the differential constant modulus algorithm to compensate for IQ imbalance. The effectiveness of the proposed algorithm is shown through computer simulations.

  • Joint Channel Shortening and Carrier Frequency Offset Estimation Based on Carrier Nulling Criterion in Downlink OFDMA Systems

    Teruyuki MIYAJIMA  Ryo KUWANA  

     
    LETTER-Communication Theory and Signals

      Vol:
    E96-A No:5
      Page(s):
    1014-1016

    In this letter, we present a joint blind adaptive scheme to suppress inter-block interference and estimate a carrier frequency offset (CFO) in downlink OFDMA systems. The proposed scheme is a combination of a channel shortening method and a CFO estimator, both based on the carrier nulling criterion. Simulation results demonstrate the effectiveness of the proposed scheme.

  • A Max-Min Approach to Channel Shortening in OFDM Systems

    Tsukasa TAKAHASHI  Teruyuki MIYAJIMA  

     
    LETTER

      Vol:
    E96-A No:1
      Page(s):
    293-295

    In OFDM systems, residual inter-block interference can be suppressed by a time-domain equalizer that blindly shortens the effective length of a channel impulse response. To further improve the performance of blind equalizers, we propose a channel shortening method that attempts to maximize the minimum FFT output power over data subcarriers. Simulation results indicate that the max-min strategy has performance improvement over a conventional channel shortening method.

  • An Improved Channel Shortening Method with Application to MC-CDMA Systems

    Mizuki KOTAKE  Teruyuki MIYAJIMA  

     
    PAPER-Communication Theory and Signals

      Vol:
    E95-A No:11
      Page(s):
    1955-1962

    In block transmissions, inter-block interference (IBI) due to delayed waves exceeding a cyclic prefix severely limits the performance. To suppress IBI in downlink MC-CDMA systems, this paper proposes a novel channel shortening method using a time-domain equalizer. The proposed method minimizes a cost function related to equalizer output autocorrelations without the transmission of training symbols. We prove that the method can shorten a channel and suppress IBI completely. Simulation results show that the proposed method can significantly suppress IBI using relatively less number of received blocks than a conventional method when the number of users is moderate.

  • Overlap Frequency-Domain Multiuser Detection for Asynchronous Uplink Multiuser MIMO-OFDM Systems

    Koichi ISHIHARA  Yasushi TAKATORI  Kentaro NISHIMORI  Kazuyasu OKADA  

     
    PAPER

      Vol:
    E92-B No:5
      Page(s):
    1582-1588

    In this paper, we propose a novel multiuser detection (MUD) method that is robust against timing offset between wireless terminals (WTs) for the multiuser multiple-input multiple-output (MU-MIMO) orthogonal frequency division multiplexing (OFDM) uplink. In the proposed method, MUD is carried out in the frequency-domain using overlapping fast Fourier transform (FFT) windows. After the inverse FFT (IFFT) operation, the samples obtained at both ends of each FFT window are discarded to suppress the effect of inter-block interference (IBI). Thus, it realizes an MUD regardless of the arrival timing differences of the signals from the WTs. The achievable bit error rate (BER) performance of the proposed MUD method is evaluated by computer simulations in a frequency selective fading channel.

  • Blind Channel Shortening for Block Transmission of Correlated Signals

    Teruyuki MIYAJIMA  Yoshihisa WATANABE  

     
    PAPER

      Vol:
    E91-A No:11
      Page(s):
    3095-3103

    In block transmission systems, blind channel shortening methods are known to be effective to reduce the influence of interblock interference which degrades the performance when the length of a channel impulse response is extremely long. Conventional methods assume that the transmitted signal is uncorrelated; however, this assumption is invalid in practical systems such as OFDM with null carriers and MC-CDMA. In this paper, we consider blind channel shortening methods for block transmissions when the transmitted samples within a block are correlated. First, the channel shortening ability of a conventional method is clarified. Next, a new method which exploits the fact that the transmitted samples in different blocks are uncorrelated is introduced. It is shown that the proposed method can shorten the channel properly under certain conditions. Finally, simulation results of OFDM and MC-CDMA systems are shown to verify the effectiveness of the proposed method compared with a conventional one.

  • Interference Suppression Capability of Array Antenna Using Cyclic Prefix in Block Transmission

    Hiroaki WATAHIKI  Teruyuki MIYAJIMA  

     
    LETTER

      Vol:
    E91-A No:8
      Page(s):
    2045-2047

    In block transmission systems, performance degrades due to inter-block interference (IBI) when there are multipaths with delays exceeding cyclic prefix (CP) length. An interesting technique to overcome this problem is an array antenna proposed by Hori et al., which restores the CP property by minimizing a cost function. However, its performance has not been theoretically cleared. In this letter, the performance of a method which minimizes the cost function under a unit norm constraint is analyzed. It is shown that the method can suppress IBI and its interference suppression capability depends on a certain parameter. The analytical result is verified through computer simulation.