The search functionality is under construction.

Keyword Search Result

[Keyword] interference cancelation(4hit)

1-4hit
  • Joint Maximum Likelihood Detection in Far User of Non-Orthogonal Multiple Access

    Kenji ANDO  Yukitoshi SANADA  Takahiko SABA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/07/29
      Vol:
    E100-B No:1
      Page(s):
    177-186

    Non-orthogonal multiple access (NOMA) enables multiple mobile devices to share the same frequency band. In a conventional NOMA scheme, the receiver of a far user detects its desired signal without canceling the signal for a near user. However, the signal for the near user acts as interference and degrades the accuracy of likelihood values for the far user. In this paper, a joint maximum likelihood detection scheme for the far user of the NOMA downlink is proposed. The proposed scheme takes the interference signal into account in calculating the likelihood values. Numerical results obtained through computer simulation show that the proposed scheme improves the performance by from 0.2dB to 3.1dB for power allocation coefficients of 0.2 to 0.4 at a bit error rate (BER) of 10-2 relative to the conventional scheme.

  • N-Shift Zero Correlation Zone Sequence

    Chao ZHANG  Keke PANG  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E97-A No:1
      Page(s):
    432-435

    N-Shift Zero Correlation Zone (NS-ZCZ) sequence is defined with the N-shift zero correlation zone in the correlation function. Namely, the N-shift zero only appears within the correlation zone symmetrically distributed in the center of the correlation function. Moreover, the traditional ZCZ sequences can be considered as the N-shift ZCZ sequence with N=1. Similar to ZCZ sequence, NS-ZCZ sequences can be applied in sequence design for co-channel interference mitigation with more sequences in the sequence set compared with the traditional N-shift sequences. In this letter, the definition and construction algorithms are proposed. The corresponding theoretical bounds are analyzed.

  • Adaptive Spatial Other Cell Interference Cancelation for Multiuser Multi-Cell Cooperating System

    Jin-Hee LEE  Young-Chai KO  

     
    PAPER

      Vol:
    E94-B No:12
      Page(s):
    3232-3238

    In multi-cell wireless systems with insufficient frequency reuse, the downlink transmission suffers from other cell interference (OCI). The cooperative transmission among multiple base stations is an effective way to mitigate OCI and increase the system sum rate. An adaptive scheme for serving one user in each cell was proposed in [1]. In this paper, we generalize the scheme in [1] by serving more than one user in each cell with adaptive OCI cancelation. Based on our derived statistics of a user for different transmission strategies, we propose a low complexity transmission scheme that achieves near-maximal ergodic sum rate. Through numerical examples, we show that the system sum rate can be improved by selecting the appropriate transmission strategy combination adaptively. As a result, our proposed system can explore spatial multiplexing gain without additional power and thus improves the system sum rate significantly.

  • Iterative Frequency-Domain Soft Interference Cancellation for Multicode DS- and MC-CDMA Transmissions and Performance Comparison

    Koichi ISHIHARA  Kazuaki TAKEDA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:12
      Page(s):
    3344-3355

    Frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion can significantly improve the BER performance of DS- and MC-CDMA systems in a severe frequency-selective fading channel. However, since the frequency-distorted signal cannot be completely equalized, the residual inter-code interference (ICI) limits the BER performance improvement. 4G systems must support much higher variable rate data services. Orthogonal multicode transmission technique has flexibility in offering variable rate services. However, the BER performance degrades as the number of parallel codes increases. In this paper, we propose an iterative frequency-domain soft interference cancellation (IFDSIC) scheme for multicode DS- and MC-CDMA systems and their achievable BER performances are evaluated by computer simulation.