The search functionality is under construction.

Keyword Search Result

[Keyword] khatri-rao(9hit)

1-9hit
  • Joint DOA and DOD Estimation Using KR-MUSIC for Overloaded Target in Bistatic MIMO Radars Open Access

    Chih-Chang SHEN  Jia-Sheng LI  

     
    LETTER-Spread Spectrum Technologies and Applications

      Pubricized:
    2023/08/07
      Vol:
    E107-A No:4
      Page(s):
    675-679

    This letter deals with the joint direction of arrival and direction of departure estimation problem for overloaded target in bistatic multiple-input multiple-output radar system. In order to achieve the purpose of effective estimation, the presented Khatri-Rao (KR) MUSIC estimator with the ability to handle overloaded targets mainly combines the subspace characteristics of the target reflected wave signal and the KR product based on the array response. This letter also presents a computationally efficient KR noise subspace projection matrix estimation technique to reduce the computational load due to perform high-dimensional singular value decomposition. Finally, the effectiveness of the proposed method is verified by computer simulation.

  • Improvement of Ranging Accuracy during Interference Avoidance for Stepped FM Radar Using Khatri-Rao Product Extended-Phase Processing

    Keiji JIMI  Isamu MATSUNAMI  Ryohei NAKAMURA  

     
    PAPER-Sensing

      Pubricized:
    2018/07/17
      Vol:
    E102-B No:1
      Page(s):
    156-164

    In stepped FM radar, the transmitter intermittently transmits narrowband pulse trains of frequencies that are incremented in steps, and the receiver performs phase detection on each pulse and applies the inverse discrete Fourier transform (IDFT) to create ultra-short pulses in the time domain. Furthermore, since the transmitted signal consists of a narrowband pulse train of different frequencies, the transmitter can avoid arbitrary frequency bands while sending the pulse train (spectrum holes), allowing these systems to coexist with other narrowband wireless systems. However, spectrum holes cause degradation in the distance resolution and range sidelobe characteristics of wireless systems. In this paper, we propose a spectrum hole compensation method for stepped FM radars using Khatri-Rao product extended-phase processing to overcome the problem of spectrum holes and investigate the effectiveness of this method through experiments. Additionally, we demonstrate that the proposed method dramatically improves the range sidelobe and distance resolution characteristics.

  • DOA Estimation of Quasi-Stationary Signals Exploiting Virtual Extension of Coprime Array Imbibing Difference and Sum Co-Array

    Tarek Hasan AL MAHMUD  Zhongfu YE  Kashif SHABIR  Yawar Ali SHEIKH  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/02/16
      Vol:
    E101-B No:8
      Page(s):
    1876-1883

    Using local time frames to treat non-stationary real world signals as stationary yields Quasi-Stationary Signals (QSS). In this paper, direction of arrival (DOA) estimation of uncorrelated non-circular QSS is analyzed by applying a novel technique to achieve larger consecutive lags using coprime array. A scheme of virtual extension of coprime array is proposed that exploits the difference and sum co-array which can increase consecutive co-array lags in remarkable number by using less number of sensors. In the proposed method, cross lags as well as self lags are exploited for virtual extension of co-arrays both for differences and sums. The method offers higher degrees of freedom (DOF) with a larger number of non-negative consecutive lags equal to MN+2M+1 by using only M+N-1 number of sensors where M and N are coprime with congenial interelement spacings. A larger covariance matrix can be achieved by performing covariance like computations with the Khatri-Rao (KR) subspace based approach which can operate in undetermined cases and even can deal with unknown noise covariances. This paper concentrates on only non-negative consecutive lags and subspace based method like Multiple Signal Classification (MUSIC) based approach has been executed for DOA estimation. Hence, the proposed method, named Virtual Extension of Coprime Array imbibing Difference and Sum (VECADS), in this work is promising to create larger covariance matrix with higher DOF for high resolution DOA estimation. The coprime distribution yielded by the proposed approach can yield higher resolution DOA estimation while avoiding the mutual coupling effect. Simulation results demonstrate its effectiveness in terms of the accuracy of DOA estimation even with tightly aligned sources using fewer sensors compared with other techniques like prototype coprime, conventional coprime, Coprime Array with Displaced Subarrays (CADiS), CADiS after Coprime Array with Compressed Inter-element Spacing (CACIS) and nested array seizing only difference co-array.

  • Nested Circular Array and Its Concentric Extension for Underdetermined Direction of Arrival Estimation

    Thomas BASIKOLO  Koichi ICHIGE  Hiroyuki ARAI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/10/17
      Vol:
    E101-B No:4
      Page(s):
    1076-1084

    In this paper, a new array geometry is proposed which is capable of performing underdetermined Direction-Of-Arrival (DOA) estimation for the circular array configuration. DOA estimation is a classical problem and one of the most important techniques in array signal processing as it has applications in wireless and mobile communications, acoustics, and seismic sensing. We consider the problem of estimating DOAs in the case when we have more sources than the number of physical sensors where the resolution must be maintained. The proposed array geometry called Nested Sparse Circular Array (NSCA) is an extension of the two level nested linear array obtained by nesting two sub-circular arrays and one element is placed at the origin. In order to extend the array aperture, a Khatri-Rao (KR) approach is applied to the proposed NSCA which yields the virtual array structure. To utilize the increase in the degrees of freedom (DOFs) that this new array provides, a subspace based approach (MUSIC) for DOA estimation and l1-based optimization approach is extended to estimate DOAs using NSCA. Simulations show that better performance for underdetermined DOA estimation is achieved using the proposed array geometry.

  • MIMO Doppler Radar Using Khatri-Rao Product Virtual Array for Indoor Human Detection

    Yosuke WAKAMATSU  Hiroyoshi YAMADA  Yoshio YAMAGUCHI  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:1
      Page(s):
    124-133

    The MIMO technique can improve system performance of not only communication system but also of radar systems. In this paper, we apply the MIMO radar with enhanced angular resolution to the indoor location estimation of humans. The Khatri-Rao (KR) matrix product is also adopted for further angular resolution enhancement. We show that the MIMO radar with the KR matrix product processing can increase the number of virtual elements effectively with suitable element arrangement, hence higher angular resolution can be realized. In general, the KR matrix product processing is not suitable for coherent radar because of signal correlation. However, when targets signals have enough Doppler frequency differential against each other, this approach works well because the signals are decorrelated. In addition, Doppler filtering is introduced to remove unwanted responses of stationary objects which make human detection difficult with conventional methods. Computer simulation and experimental results are provided to show performance of the proposed method.

  • DOA Estimation for Multi-Band Signal Sources Using Compressed Sensing Techniques with Khatri-Rao Processing

    Tsubasa TERADA  Toshihiko NISHIMURA  Yasutaka OGAWA  Takeo OHGANE  Hiroyoshi YAMADA  

     
    PAPER

      Vol:
    E97-B No:10
      Page(s):
    2110-2117

    Much attention has recently been paid to direction of arrival (DOA) estimation using compressed sensing (CS) techniques, which are sparse signal reconstruction methods. In our previous study, we developed a method for estimating the DOAs of multi-band signals that uses CS processing and that is based on the assumption that incident signals have the same complex amplitudes in all the bands. That method has a higher probability of correct estimation than a single-band DOA estimation method using CS. In this paper, we propose novel DOA estimation methods for multi-band signals with frequency characteristics using the Khatri-Rao product. First, we formulate a method that can estimate DOAs of multi-band signals whose phases alone have frequency dependence. Second, we extend the scheme in such a way that we can estimate DOAs of multi-band signals whose amplitudes and phases both depend on frequency. Finally, we evaluate the performance of the proposed methods through computer simulations and reveal the improvement in estimation performance.

  • Angular Resolution Improvement of Ocean Surface Current Radar Based on the Khatri-Rao Product Array Processing

    Hiroyoshi YAMADA  Naoki OZAWA  Yoshio YAMAGUCHI  Keizo HIRANO  Hiroyuki ITO  

     
    PAPER-Adaptive Array Antennas/MIMO

      Vol:
    E96-B No:10
      Page(s):
    2469-2474

    Ocean surface current radar is a Doppler radar to observe oceanographic information using the Bragg scattering resonance mechanism. In this paper, we consider angular resolution improvement of the radar. The radar employs an antenna array with FMICW operation, then it can resolve angular distribution by Digital Beam Forming (DBF) and distance by Fourier transform of the beat signal obtained by the FMICW radar. In order to obtain sufficient angular resolution, large array length or aperture with increasing the number of elements is needed, that is often difficult to realize in the HF/VHF ocean surface current radar. In this paper we propose to apply the Khatri-Rao (KR) product array processing to the radar. To verify effectiveness of the KR product array processing in angular resolution enhancement for the ocean surface current radar, we apply the KR product array to actual experimental data set of the radar, and show that the method is available to angular resolution enhancement and Doppler spectrum improvement.

  • A Novel DOA Estimation Error Reduction Preprocessing Scheme of Correlated Waves for Khatri-Rao Product Extended-Array

    Satoshi SHIRAI  Hiroyoshi YAMADA  Yoshio YAMAGUCHI  

     
    PAPER-Adaptive Array Antennas/MIMO

      Vol:
    E96-B No:10
      Page(s):
    2475-2482

    In this paper, we study on direction-of-arrival (DOA) estimation error reduction by Khatri-Rao (KR) product extended array in the presence of correlated waves. Recently, a simple array signal processing technique called KR product extended array has been proposed. By using the technique, degrees-of-freedom of an array can be easily increased. However, DOA estimation accuracy deteriorates when correlated or coherent waves arrive. Such highly correlated waves often arrive for radar application, hence error reduction technique has been desired. Therefore, in this paper, we propose a new method for error reduction preprocessing scheme by using N-th root of matrix. The N-th root of matrix has a similar effect to the spatial smoothing preprocessing for highly correlated signals. As a result, DOA estimation error due to signal correlation will be reduced. The optimal order of N depends on the data itself. In this paper, a simple iterative method to obtain adaptive N is also proposed. Computer simulation results are provided to show performance of the proposed method.

  • Khatri-Rao Unitary Space-Time Modulation

    Lei WANG  Shihua ZHU  Jun WANG  Yanxing ZENG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:9
      Page(s):
    2530-2536

    Based on the Khatri-Rao matrix product, we propose a novel unitary space-time modulation design called KR-USTM in this paper. Different from existing USTM schemes, such as the systematic approach and space-time frequency-shift keying (ST-FSK), KR-USTM does not require any computer search and can be applied to any number of transmit antennas. Moreover, the special structure of KR-USTM also makes it a high-rate scheme and achieve full antenna diversity as well as lower decoding complexity. Simulation results show that the proposed KR-USTM constellation achieves error performance comparable to existing USTM designs at low rates, while it outperforms them at high rates.