The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] layer thickness(4hit)

1-4hit
  • Effect of Optical Intensity Distribution on Conversion Efficiency of Inverted Organic Photovoltaic Cell

    Toshifumi KOBORI  Norihiko KAMATA  Takeshi FUKUDA  

     
    BRIEF PAPER

      Vol:
    E100-C No:2
      Page(s):
    114-117

    An optical intensity distribution under light irradiation in the organic photovoltaic cell affects the absorbance of the active layer, which determines the photovoltaic performance. In this research, we evaluated the optimum thickness of the organic active layer with poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)] and [6,6]-phenyl C71-butyric acid methyl ester. The spectral response of external quantum efficiency was good agreement with the simulated optical intensity distribution within a device stack as a function of the position and the wavelength. As a result, the highest photoconversion efficiency of 10.1% was achieved for the inverted device structure.

  • Structure and Magnetic Properties of Co/Pd Multilayer Films Epitaxially Grown on Single-Crystal Substrates

    Mitsuru OHTAKE  Kousuke TOBARI  Masaaki FUTAMOTO  

     
    REVIEW PAPER

      Vol:
    E96-C No:12
      Page(s):
    1452-1459

    Co/Pd multilayer films are prepared on fcc-Pd underlayers of (001), (011), and (111) orientations hetero-epitaxially grown on MgO single-crystal substrates at room temperature. The effects of underlayer orientation, Co and Pd layer thicknesses, and repetition number of Co/Pd bi-layer on the structure and the magnetic properties are investigated. fcc-Co/fcc-Pd multilayer films of (001), (011), and (111) orientations epitaxially grow on the Pd underlayers of (001), (011), and (111) orientations, respectively. Flatter and sharper Co/Pd interface is formed in the order of (011) < (111) < (001) orientation. Atomic mixing around the Co/Pd interface is enhanced by deposition of thinner Co and Pd layers, and Co-Pd alloy phase is formed. With increasing the repetition number (decreasing the thicknesses of Co and Pd layers), perpendicular magnetic anisotropy is promoted. Stronger perpendicular anisotropy is observed in the order of film orientation of (001) < (011) < (111). Perpendicular anisotropy of Co/Pd multilayer film is considered to be originated from the two sources; the interface anisotropy and the magnetocrystalline anisotropy associated with Co-Pd lattice shrinkage along the perpendicular direction. In order to enhance the perpendicular anisotropy of Co/Pd multilayer film, it is important to align the film orientation to be (111) and to enhance the lattice distortion along the perpendicular direction.

  • Spectroscopic Ellipsometry Study of Organic Light Emitting Diode Based on Phosphorescent PtOEP

    Taiju TSUBOI  Yoko WASAI  Nataliya NABATOVA-GABAIN  

     
    PAPER-Characterization and Abilities of Organic Electronic Devices

      Vol:
    E87-C No:12
      Page(s):
    2039-2044

    We have determined the thickness and optical constants (refractive index and extinction coefficient) of each layer in the multi-layer organic light emitting diode (OLED) devices based on phosphorescent platinum octaethyl porphine (PtOEP) using a phase modulated spectroscopic ellipsometer. The thickness of each layer estimated from the ellipsometric measurement is different from the thickness measured with quartz oscillator during the evaporation of organic materials. The deviation of total multi-layer thickness is about 5%, while the deviation in each of N, N'-bis(1-naphtyl)-N, N'-diphenyl-1,1'-biphenyl-4,4'-diamine (α-NPD) and aluminum tris 8-hydroxyquinoline (Alq3) layers is about 20-25%. Additionally the spectra of refractive index and extinction coefficient of Alq3 and α-NPD layers are different from those that are measured using the single layer films. These results are understood by penetration of organic material from the neighboring layers in the multi-layer structure devices.

  • Effect of Recording Layer Thickness on Read/Write Performances of Co/Pd Multilayer Perpendicular Magnetic Recording Media

    Masaru UCHIDA  Naoki HONDA  Kazuhiro OUCHI  

     
    PAPER

      Vol:
    E83-C No:9
      Page(s):
    1522-1529

    The medium noise of single-layer perpendicular recording media is known to be suppressed by reducing the magnetic domain size and achieving a higher squareness ratio (Mr/Ms = SQ) in the perpendicular M-H loop. The media with smaller domain sizes exhibit a small slope at Hc in the M-H loop due to exchange de-coupling between adjacent grains, which requires a sharp head field to acquire high recording performances. Reduction of the medium thickness would be effective for recording as only a sharp head field near the head surface could be used. Thus, the effects of reduced recording layer thickness in single-layer perpendicular recording media on read/write performances were investigated using Co/Pd multilayer media with a small loop slope having thickness, δ, of 46, 22 and 10 nm, and with a steeper loop slope having δ of 40 and 10 nm. It was found that the recording performance on small loop slope media could be improved in terms of signal level by reducing the recording layer thickness, which indicated that the recording on the media was sensitive to the recording head field. The results in the simulation analysis were similar to those obtained experimentally, indicating that the change in recording layer thickness could be mainly regarded as that in the head-medium spacing. Thinner media with steeper loop slopes could acquire a narrower dipulse width. The recording resolution of the present media, however, was determined under the influence of the domain structure and the size. Finally, for media with small loop slopes, the same SNR of 38 dB at 100 kFRPI was obtained for thicknesses of 22 and 10 nm, which was larger than that for a thick medium of 46 nm thickness by 8 dB. For both the steep loop slope media, the obtained SNR was 35 dB at 100 kFRPI.