The search functionality is under construction.

Keyword Search Result

[Keyword] leaky wave(11hit)

1-11hit
  • Metasurface Antennas: Design and Performance Open Access

    Marco FAENZI  Gabriele MINATTI  Stefano MACI  

     
    INVITED PAPER-Antennas

      Pubricized:
    2018/08/21
      Vol:
    E102-B No:2
      Page(s):
    174-181

    This paper gives an overview on the design process of modulated metasurface (MTS) antennas and focus on their performance in terms of efficiency and bandwidth. The basic concept behind MTS antennas is that the MTS imposes the impedance boundary conditions (IBCs) seen by a surface wave (SW) propagating on it. The MTS having a spatially modulated equivalent impedance transforms the SW into a leaky wave with controlled amplitude, phase and polarization. MTS antennas are hence highly customizable in terms of performances by simply changing the IBCs imposed by the MTS, without affecting the overall structure. The MTS can be configured for high gain (high aperture efficiency) with moderate bandwidth, for wide bandwidth with moderate aperture efficiency, or for a trade-off performance for bandwidth and aperture efficiency. The design process herein described relies on a generalized form of the Floquet wave theorem adiabatically applied to curvilinear locally periodic IBCs. Several technological solutions can be adopted to implement the IBCs defined by the synthesis process, from sub-wavelength patches printed on a grounded slab at microwave frequencies, to a bed of nails structure for millimeter waves: in any case, the resulting device has light weight and a low profile.

  • Leaky Wave Antenna Using Composite Right/Left-Handed Transmission Line Composed of Ladder Network for UHF Band

    Shinji KAMADA  Naobumi MICHISHITA  Yoshihide YAMADA  

     
    PAPER-Antennas

      Vol:
    E93-B No:10
      Page(s):
    2562-2569

    Broadband antennas have various applications in digital terrestrial television (DTV) services. Compact broadband antennas are required for arranging in long and narrow space along the rim of a laptop display. A leaky-wave antenna using the composite right/left-handed transmission line (CRLH-TL) is one of the candidates for achieving the broadband antenna. However, there are not enough to design guideline of small leaky wave antennas using the CRLH-TL for UHF band. In this paper, a CRLH-TL comprising a ladder network is proposed for broadband and simple structure. The paper also discusses the design of a leaky-wave antenna with the CRLH-TL operating in the DTV band. The relation between the operating bandwidth and attenuation constant of the CRLH-TL is discussed. An antenna that can be accommodated in the limited and narrow space available in mobile terminals has to be designed. Hence, the effects of the number of cells and a finite ground plane are discussed with the purpose of achieving the miniaturization of the antenna. In this study, the transmission and radiation characteristics of the fabricated antennas are measured. The gain of the fabricated antenna is confirmed to remain almost constant even when the operating frequency is varied. The maximum gain and operating band achieved in this study are approximately -0.6 dBi and about 54%, respectively.

  • Beam Steering of Leaky Wave Radiation from Nonreciprocal Phase-Shift Composite Right/Left Handed Transmission Lines

    Ken HORIKAWA  Tetsuya UEDA  Masahiro AKIYAMA  

     
    PAPER

      Vol:
    E93-C No:7
      Page(s):
    1089-1097

    Beam steering of leaky wave radiation from a nonreciprocal composite right/left handed transmission line with a ferrite substrate is proposed. The nonreciprocal phase constants of the line were tuned by changing the applied DC magnetic field normal to the ferrite substrate. In the numerical simulation and the experiment, the nonreciprocal phase characteristics and leaky wave radiation are investigated for the ferrite substrate with the magnetization not only in the saturated region, but also in the unsaturated region. The numerical simulation results are in good agreement with the measurement. It is confirmed that the beam directions of the obliquely unidirectional leaky wave radiation for two different power directions are continuously tunable.

  • Beam Scan of the Millimeter Wave Radiation from a Waveguide Slot Array Antenna Using a Ferrite

    Hitoshi SHIMASAKI  Toshiyuki ITOH  

     
    LETTER

      Vol:
    E90-C No:12
      Page(s):
    2266-2269

    This letter describes a millimeter wave slot array antenna using a rectangular waveguide and a ferrite. The radiation direction of the leaky wave from the slot array can be scanned by applying a dc bias magnetic field parallel to the ferrite. The radiation pattern of a prototype antenna has been measured at 40 GHz. The main beam direction changes from 10 to 3 degree by the bias magnetic field of 0.73 T.

  • Leaky Wave Antenna Based on Evanescent-Mode Left-Handed Transmission Lines Composed of a Cut-Off Parallel-Plate Waveguide Loaded with Dielectric Resonators

    Tetsuya UEDA  Naobumi MICHISHITA  Anthony LAI  Tatsuo ITOH  

     
    PAPER-Antennas/Systems

      Vol:
    E90-C No:9
      Page(s):
    1770-1775

    Leaky wave radiation from evanescent-mode left-handed (LH) transmission lines is investigated that are composed of a cut-off parallel plate waveguide loaded with a one-dimensional (1-D) array of the disc type dielectric resonators. The apertures are placed on side walls of the parallel plate waveguide. First of all, the dispersion diagram is numerically obtained with the complex eigenmode solutions. The simulated and measured backward wave radiation characteristics validate the backward wave propagation along the 1-D waveguides. Based on the concept, the backfire leaky wave antenna was designed and demonstrated with the 15-cell structure. The beam scanning with the operational frequency was achieved by more than 30 degrees.

  • Gain Improvement of a Microstrip Composite Right/Left-Handed Leaky Wave Antenna Using Symmetrical Unit Cells with Short Stubs

    Shin-ichiro MATSUZAWA  Kazuo SATO  Atushi SANADA  Hiroshi KUBO  

     
    LETTER-Antennas and Propagation

      Vol:
    E90-B No:6
      Page(s):
    1559-1561

    In order to improve the antenna gain, a composite right/left-handed (CRLH) leaky-wave (LW) antenna composed of symmetrical unit cells with short stubs terminated by vertical vias is designed. The use of symmetrical unit cells suppresses the cross-polarization of radiation to less than 23 dB. By comparing the measured radiation characteristics to that of a conventional CRLH LW antenna without short stub in the X-band, it is shown that the presented CRLH LW antenna with 51 unit cells offers a narrower beam and the antenna gain improves 4.1, 2.2 and 3.1 dB in the backward, broadside and forward directions of radiation, respectively.

  • W-Band Steerable Composite Right/Left-Handed Leaky Wave Antenna for Automotive Applications

    Shin-ichiro MATSUZAWA  Kazuo SATO  Yoshinori INOUE  Tsuyoshi NOMURA  

     
    PAPER

      Vol:
    E89-C No:9
      Page(s):
    1337-1344

    A novel structure for a frequency-independent steerable composite right/left-handed (CRLH) leaky wave (LW) antenna in the millimeter-wave band is proposed. This has the advantages of wide beam scanning and low profile, and is a suitable structure for mass-production. The proposed antenna has features wherein a movable dielectric slab is placed above the CRLH LW antenna, and the radiation angle can be steered by changing the distance between the slab and the antenna using compact actuators. Moreover, slots are added to the antenna to control the aperture amplitude distribution of the array antenna in order to enhance aperture efficiency. A prototype CRLH LW antenna has been fabricated with these slots, and backward-to-forward beam scanning characteristics at 76 GHz have been demonstrated successfully by measurement. A wide scanning angle from 73 to 114 deg. has been achieved experimentally. The aperture efficiency is 25.3%.

  • A W-Band Microstrip Composite Right/Left-Handed Leaky Wave Antenna

    Shin-ichiro MATSUZAWA  Kazuo SATO  Shuji ASO  Atushi SANADA  Hiroshi KUBO  

     
    LETTER-Antennas and Propagation

      Vol:
    E89-B No:4
      Page(s):
    1464-1466

    A planar composite right/left-handed leaky wave antenna which operates at W-band is fabricated and its backward to forward beam scanning operation including broadside direction is confirmed experimentally. The scanning angle from 61 to 114 degrees with a frequency scanning range of 76 to 79 GHz is achieved.

  • A Design of a Leaky Waveguide Crossed-Slot Linear Array with a Matching Element by the Method of Moments with Numerical-Eigenmode Basis Functions

    Takuichi HIRANO  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Antennas and Propagation

      Vol:
    E88-B No:3
      Page(s):
    1219-1226

    A waveguide crossed-slot linear array with a matching element is accurately analyzed and designed by the method of moments using numerical-eigenmode basis functions developed by the authors. The rounded ends of crossed-slots are accurately modeled in the analysis. The initial values of the slot parameters determined by a model with assumption of periodicity of field are modified and refined by the full-wave finite-array analysis for uniform excitation and small axial ratio. As an example, an 8-element linear array is designed at 11.85 GHz, which radiates a circularly polarized wave at a beam-tilting angle of 50 degrees. The radiation pattern, the frequency characteristics of the reflection and the axial ratio are compared between the analysis and the measurement and they agree very well. The calculated and measured axial ratio at the beam direction are 0.1 dB and 1.7 dB, respectively. This method provides a basic and powerful design tool for slotted waveguide arrays.

  • Dispersion Characteristics of Optical Planar DFB Guiding Structures for Optical Communication

    Kwang-Chun HO  Yung-Kwon KIM  

     
    PAPER

      Vol:
    E83-A No:6
      Page(s):
    1151-1160

    A rigorous modal approach based on the transmission-line description has developed to explore effectively the filtering characteristics of planar optical DFB guiding structures. Using the modal transmission-line theory, the leakage and filtering characteristics of metal-strip gratings and dielectric gratings with gain or loss are first evaluated in details at the first- and third-order Bragg regimes. It can thus serve as a powerful template for computational algorithms to determine systematically and rigorously the optical effects of multilayered periodic guiding structures, which are not readily obtained by other methods.

  • Blazing Effects of Dielectric Grating with Periodically Modulated Two Layers

    Tsuneki YAMASAKI  

     
    LETTER-Electromagnetic Theory

      Vol:
    E78-C No:3
      Page(s):
    322-327

    The blazing effects of dielectric grating consisting of two adjacent sinusoidally modulated layers which lead to the asymmetric profiles on a substrate are analyzed by using improved Fourier series expansion method. This method can be applied to the wide range of grating structure and gave high accurate results by comparing with those obtained by previous method. In this paper, the efficient blazing effects can be achieved by varying normalized distance (w/p) and the normalized thickness (d1/D), where D is kept fixed. The results are greater than those of trapezoidal profiles and triangular profiles. The influences of the second order of modulation index on the radiation efficiencies and normalized leakage factor are also discussed.