The search functionality is under construction.

Keyword Search Result

[Keyword] look up(2hit)

1-2hit
  • Omitting Cache Look-up for High-Performance, Low-Power Microprocessors

    Koji INOUE  Vasily G. MOSHNYAGA  Kazuaki MURAKAMI  

     
    PAPER-Low-Power Technologies

      Vol:
    E85-C No:2
      Page(s):
    279-287

    In this paper, we propose a novel architecture for low-power direct-mapped instruction caches, called "history-based tag-comparison (HBTC) cache. " The cache attempts to reuse tag-comparison results for avoiding unnecessary tag checks. Execution footprints are recorded into an extended BTB (Branch Target Buffer). In our evaluation, it is observed that the energy for tag comparison can be reduced by more than 90% in many applications.

  • Maple: A Simultaneous Technology Mapping, Placement, and Global Routing Algorithm for Field-Programmable Gate Arrays

    Nozomu TOGAWA  Masao SATO  Tatsuo OHTSUKI  

     
    PAPER

      Vol:
    E77-A No:12
      Page(s):
    2028-2038

    Technology mapping algorithms for LUT (Look Up Table) based FPGAs have been proposed to transfer a Boolean network into logic-blocks. However, since those algorithms take no layout information into account, they do not always lead to excellent results. In this paper, a simultaneous technology mapping, placement and global routing algorithm for FPGAs, Maple, is presented. Maple is an extended version of a simultaneous placement and global routing algorithm for FPGAs, which is based on recursive partition of layout regions and block sets. Maple inherits its basic process and executes the technology mapping simultaneously in each recursive process. Therefore, the mapping can be done with the placement and global routing information. Experimental results for some benchmark circuits demonstrate its efficiency and effectiveness.