The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] mathematical expressions(2hit)

1-2hit
  • Clustering of Handwritten Mathematical Expressions for Computer-Assisted Marking

    Vu-Tran-Minh KHUONG  Khanh-Minh PHAN  Huy-Quang UNG  Cuong-Tuan NGUYEN  Masaki NAKAGAWA  

     
    PAPER-Educational Technology

      Pubricized:
    2020/11/24
      Vol:
    E104-D No:2
      Page(s):
    275-284

    Many approaches enable teachers to digitalize students' answers and mark them on the computer. However, they are still limited for supporting marking descriptive mathematical answers that can best evaluate learners' understanding. This paper presents clustering of offline handwritten mathematical expressions (HMEs) to help teachers efficiently mark answers in the form of HMEs. In this work, we investigate a method of combining feature types from low-level directional features and multiple levels of recognition: bag-of-symbols, bag-of-relations, and bag-of-positions. Moreover, we propose a marking cost function to measure the marking effort. To show the effectiveness of our method, we used two datasets and another sampled from CROHME 2016 with synthesized patterns to prepare correct answers and incorrect answers for each question. In experiments, we employed the k-means++ algorithm for each level of features and considered their combination to produce better performance. The experiments show that the best combination of all the feature types can reduce the marking cost to about 0.6 by setting the number of answer clusters appropriately compared with the manual one-by-one marking.

  • Classifying Mathematical Expressions Written in MathML

    Shinil KIM  Seon YANG  Youngjoong KO  

     
    LETTER-Artificial Intelligence, Data Mining

      Vol:
    E95-D No:10
      Page(s):
    2560-2563

    In this paper, we study how to automatically classify mathematical expressions written in MathML (Mathematical Markup Language). It is an essential preprocess to resolve analysis problems originated from multi-meaning mathematical symbols. We first define twelve equation classes based on chapter information of mathematics textbooks and then conduct various experiments. Experimental results show an accuracy of 94.75%, by employing the feature combination of tags, operators, strings, and “identifier & operator” bigram.