1-10hit |
Surface integrity of 3D medical data is crucial for surgery simulation or virtual diagnoses. However, undesirable holes often exist due to external damage on bodies or accessibility limitation on scanners. To bridge the gap, hole-filling for medical imaging is a popular research topic in recent years [1]-[3]. Considering that a medical image, e.g. CT or MRI, has the natural form of a tensor, we recognize the problem of medical hole-filling as the extension of Principal Component Pursuit (PCP) problem from matrix case to tensor case. Since the new problem in the tensor case is much more difficult than the matrix case, an efficient algorithm for the extension is presented by relaxation technique. The most significant feature of our algorithm is that unlike traditional methods which follow a strictly local approach, our method fixes the hole by the global structure in the specific medical data. Another important difference from the previous algorithm [4] is that our algorithm is able to automatically separate the completed data from the hole in an implicit manner. Our experiments demonstrate that the proposed method can lead to satisfactory results.
Accurate registration is crucial for medical image analysis. In this letter, we proposed an improved Demons technique (IDT) for medical image registration. The IDT improves registration quality using orthogonal gradient information. The advantage of the proposed IDT is assessed using 14 medical image pairs. Experimental results show that the proposed technique provides about 8% improvement over existing Demons-based techniques in terms of registration accuracy.
Sirikan CHUCHERD Annupan RODTOOK Stanislav S. MAKHANOV
We propose a modification of the generalized gradient vector flow field techniques based on multiresolution analysis and phase portrait techniques. The original image is subjected to mutliresolutional analysis to create a sequence of approximation and detail images. The approximations are converted into an edge map and subsequently into a gradient field subjected to the generalized gradient vector flow transformation. The procedure removes noise and extends large gradients. At every iteration the algorithm obtains a new, improved vector field being filtered using the phase portrait analysis. The phase portrait is applied to a window with a variable size to find possible boundary points and the noise. As opposed to previous phase portrait techniques based on binary rules our method generates a continuous adjustable score. The score is a function of the eigenvalues of the corresponding linearized system of ordinary differential equations. The salient feature of the method is continuity: when the score is high it is likely to be the noisy part of the image, but when the score is low it is likely to be the boundary of the object. The score is used by a filter applied to the original image. In the neighbourhood of the points with a high score the gray level is smoothed whereas at the boundary points the gray level is increased. Next, a new gradient field is generated and the result is incorporated into the iterative gradient vector flow iterations. This approach combined with multiresolutional analysis leads to robust segmentations with an impressive improvement of the accuracy. Our numerical experiments with synthetic and real medical ultrasound images show that the proposed technique outperforms the conventional gradient vector flow method even when the filters and the multiresolution are applied in the same fashion. Finally, we show that the proposed algorithm allows the initial contour to be much farther from the actual boundary than possible with the conventional methods.
Supaporn KIATTISIN Kosin CHAMNONGTHAI
Bone Mineral Density (BMD) is an indicator of osteoporosis that is an increasingly serious disease, particularly for the elderly. To calculate BMD, we need to measure the volume of the femur in a noninvasive way. In this paper, we propose a noninvasive bone volume measurement method using x-ray attenuation on radiography and medical knowledge. The absolute thickness at one reference pixel and the relative thickness at all pixels of the bone in the x-ray image are used to calculate the volume and the BMD. First, the absolute bone thickness of one particular pixel is estimated by the known geometric shape of a specific bone part as medical knowledge. The relative bone thicknesses of all pixels are then calculated by x-ray attenuation of each pixel. Finally, given the absolute bone thickness of the reference pixel, the absolute bone thickness of all pixels is mapped. To evaluate the performance of the proposed method, experiments on 300 subjects were performed. We found that the method provides good estimations of real BMD values of femur bone. Estimates shows a high linear correlation of 0.96 between the volume Bone Mineral Density (vBMD) of CT-SCAN and computed vBMD (all P<0.001). The BMD results reveal 3.23% difference in volume from the BMD of CT-SCAN.
Yasuhiro KAWASAKI Fumihiko INO Yoshinobu SATO Shinichi TAMURA Kenichi HAGIHARA
This paper presents the design and implementation of a hip range of motion (ROM) estimation method that is capable of fine-grained estimation during total hip replacement (THR) surgery. Our method is based on two acceleration strategies: (1) adaptive mesh refinement (AMR) for complexity reduction and (2) parallelization for further acceleration. On the assumption that the hip ROM is a single closed region, the AMR strategy reduces the complexity for N N N stance configurations from O(N3) to O(ND), where 2≤D≤3 and D is a data-dependent value that can be approximated by 2 in most cases. The parallelization strategy employs the master-worker paradigm with multiple task queues, reducing synchronization between processors with load balancing. The experimental results indicate that the implementation on a cluster of 64 PCs completes estimation of 360360180 stance configurations in 20 seconds, playing a key role in selecting and aligning the optimal combination of artificial joint components during THR surgery.
The objective of this paper is to present a decision support system which uses a computer-based procedure to detect tumor blocks or lesions in digitized medical images. The authors developed a simple method with a low computation effort to detect tumors on T2-weighted Magnetic Resonance Imaging (MRI) brain images, focusing on the connection between the spatial pixel value and tumor properties from four different perspectives: 1) cases having minuscule differences between two images using a fixed block-based method, 2) tumor shape and size using the edge and binary images, 3) tumor properties based on texture values using spatial pixel intensity distribution controlled by a global discriminate value, and 4) the occurrence of content-specific tumor pixel for threshold images. Measurements of the following medical datasets were performed: 1) different time interval images, and 2) different brain disease images on single and multiple slice images. Experimental results have revealed that our proposed technique incurred an overall error smaller than those in other proposed methods. In particular, the proposed method allowed decrements of false alarm and missed alarm errors, which demonstrate the effectiveness of our proposed technique. In this paper, we also present a prototype system, known as PCB, to evaluate the performance of the proposed methods by actual experiments, comparing the detection accuracy and system performance.
Harald GALDA Hajime MURAO Hisashi TAMAKI Shinzo KITAMURA
Malignant melanoma is a skin cancer that can be mistaken as a harmless mole in the early stages and is curable only in these early stages. Therefore, dermatologists use a microscope that shows the pigment structures of the skin to classify suspicious skin lesions as malignant or benign. This microscope is called "dermoscope." However, even when using a dermoscope a malignant skin lesion can be mistaken as benign or vice versa. Therefore, it seems desirable to analyze dermoscopic images by computer to classify the skin lesion. Before a dermoscopic image can be classified, it should be segmented into regions of the same color. For this purpose, we propose a segmentation method that automatically determines the number of colors by optimizing a cluster validity index. Cluster validity indices can be used to determine how accurately a partition represents the "natural" clusters of a data set. Therefore, cluster validity indices can also be applied to evaluate how accurately a color image is segmented. First the RGB image is transformed into the L*u*v* color space, in which Euclidean vector distances correspond to differences of visible colors. The pixels of the L*u*v* image are used to train a self-organizing map. After completion of the training a genetic algorithm groups the neurons of the self-organizing map into clusters using fuzzy c-means. The genetic algorithm searches for a partition that optimizes a fuzzy cluster validity index. The image is segmented by assigning each pixel of the L*u*v* image to the nearest neighbor among the cluster centers found by the genetic algorithm. A set of dermoscopic images is segmented using the method proposed in this research and the images are classified based on color statistics and textural features. The results indicate that the method proposed in this research is effective for the segmentation of dermoscopic images.
Kensaku MORI Akihiro URANO Jun-ichi HASEGAWA Jun-ichiro TORIWAKI Hirofumi ANNO Kazuhiro KATADA
In this paper we propose a new medical image processing system called Virtualized Endoscope System (VES)", which can examine the inside of a virtualized human body. The virtualized human body is a 3-D digital image which is taken by such as X-ray CT scanner or MRI scanner. VES consists of three modules; (1) imaging, (2) segmentation and reconstruction and (3) interactive operation. The interactive operation module has following thee major functions; (a) display of, (b) measurement from, and (c) manipulation to the virtualized human body. The user of the system can observe freely both the inside and the outside of a target organ from any point and any direction freely, and can perform necessary measurement interactively concerning angle and length at any time during observation. VES enables to observe repeatedly an area where the real endoscope can not enter without pain from any direction which the real endoscope can not. We applied this system to real 3-D X-ray CT images and obtained good result.
In this paper, the discrimination of ultrasonic heart (echocardiographic) images is studied by making use of some texture features, including the angular second moment, contrast, correlation and entropy which are obtained from a gray-level cooccurrence matrix. Features of these types are used as inputs to the input layer of a neural network (NN) to classify two sets of echocardiographic images-normal heart and dilated cardiomyopathy (DCM) (18 and 13 samples, respectively). The performance of the NN classifier is also compared to that of a minimum distance (MD) classifier. Implementation of our algorithm is performed on a PC-486 personal computer. Our results show that the NN produces about 94% (the confidence level setting is 0.9) and the MD produces about 84% correct classification. We notice that the NN correctly classifies all the DCM cases, namely, all the misclassified cases are of false positive. These results indicate that the method of feature-based image analysis using the NN has potential utility for computer-aided diagnosis of the DCM and other heart diseases.
This paper describes a segmentation method of liver structure from abdominal CT images using a three–layered neural network (NN). Before the NN segmentation, preprocessing is employed to locally enhance the contrast of the region of interest. Postprocessing is also automatically applied after the NN segmentation in order to remove the unwanted spots and smooth the detected boundary. To evaluate the performance of the proposed method, the NN–determined boundaries are compared with those traced by two highly trained surgeons. Our preliminary results show that the proposed method has potential utility in automatic segmentation of liver structure and other organs in the human body.