The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] microstrip resonator(6hit)

1-6hit
  • Realization of Attenuation Poles, Spurious Resonance Suppression and Size Reduction by Microstrip SIR Loaded with Dielectric Rods

    Ramesh K. POKHAREL  Kouji WADA  Osamu HASHIMOTO  Takeshi TAKAHASHI  

     
    PAPER-Devices

      Vol:
    E88-C No:12
      Page(s):
    2302-2309

    Characteristics of a class of stepped-impedance resonators (SIRs) which is loaded with two dielectric rods, are investigated by a Finite-Difference Time-Domain (FDTD) method. Dielectric rods to be inserted between a strip conductor and the ground plane have higher relative permittivity than that of the substrate. When a tapped half-wavelength (λ/2) microstrip resonator is loaded with two dielectric rods, the electric length of a loaded λ/2 resonator becomes longer than λ/2, which makes its fundamental resonant frequency () to be generated on the region lower than that of an unloaded λ/2 resonator (fr) and its first spurious response (fsp1) is generated on the region higher than 2. Therefore, to shift back to fr, the resonator's length is to be reduced, and this, in turns, suppress the spurious responses. Then, the resonant characteristics of an SIR employing the proposed method has also been investigated, and it is found that this is capable of suppressing the spurious responses in wideband together with an attenuation pole in the stopband, and of further reducing the resonator's length. Therefore, wide exploitation of the presented method can be expected in the filter design based on the LTCC technique.

  • A Method for LTCC Resonators to Realize Improved-Resonant Characteristics on Reduced-Size Microstrip Structure

    Ramesh K. POKHAREL  Kouji WADA  Osamu HASHIMOTO  Takeshi TAKAHASHI  

     
    PAPER-Components and Devices

      Vol:
    E87-C No:9
      Page(s):
    1517-1523

    This paper presents a new method to improve the resonant characteristics of a microstrip resonator. The improved characteristics have been achieved by inserting two dielectric rods between strip conductor and the ground plane. Dielectric rods to be inserted have higher relative permittivity than that of the substrate. Therefore, it is suitable to realize by Low-Temperature Cofired Ceramics (LTCC) technique. Several model of microstrip resonators employing the proposed method are analyzed by a Finite-Difference Time-Domain (FDTD) method, and their resonant characteristics are discussed. One of the advantages of the proposed method is that an attenuation pole (fl or fh) in each side of the fundamental resonant frequency (fr) and improved-spurious responses can be realized together by a capacitive-coupling tapped resonator loaded with dielectric rods. The proposed method is also effective to achieve sharp skirt characteristics and wide stopband of a direct-coupling tapped resonator which can be used either as a wideband lowpass filter or a band-elimination filter. Another interesting feature of the analyzed resonators is that about 60% reduction in resonator's length has been obtained compared to a basic half-wavelength (λ/2) microstrip resonator. Therefore, wide exploitation of the proposed method can be expected in the filter design based on the LTCC technique.

  • A Bandpass Filter Using Miniaturized Microstrip Square SIR

    Hun NAM  Hyeonjin LEE  Yeongseog LIM  

     
    LETTER-Electromagnetic Theory

      Vol:
    E86-C No:2
      Page(s):
    236-239

    A four-pole quasi-elliptic function bandpass filter is designed and fabricated using a miniaturized microstrip square Stepped Impedance Resonator (SIR). The Nonuniform Finite Difference Time Domain (NUFDTD) method is used to design the resonator and to calculate the coupling coefficients of three basic structures. Theoretical and experimental results are presented. This filter is not only compact size but also has a wide upper stop band.

  • Microwave Surface Resistance Measurement Sensitivity of HTS Thin Films by Microstripline Resonator at Fundamental and Higher Resonant Modes

    Narayan D. KATARIA  Mukul MISRA  

     
    PAPER-Microwave Devices and Systems

      Vol:
    E85-C No:3
      Page(s):
    696-699

    The measurement sensitivity of microwave surface resistance, Rs, of high temperature superconducting (HTS) thin films using half-wavelength microstrip resonator with copper and HTS ground plane is analyzed for fundamental and higher order modes of the resonator. The estimated sensitivity of Rs-measurement is at least an order of magnitude greater at fundamental resonant frequency compared to when measured using higher order harmonic modes.

  • 650-GHz and 1-THz Josephson Array Oscillators Using Shunted Tunnel Junctions with a Small Parasitic Inductance

    Akira KAWAKAMI  Zhen WANG  

     
    PAPER-Analog Applications

      Vol:
    E81-C No:10
      Page(s):
    1595-1600

    Resonant properties of resistively shunted tunnel junctions dominate the high-frequency performance of Josephson array oscillators. To improve the operating frequency, we have developed resistively shunted Nb/AlOx/Nb tunnel junctions with a small parasitic inductance. The inductance was minimized by reducing the inductive length between the tunnel junction and the contact hole to be about 1µm. By fitting the measured I-V characteristics of the shunted tunnel junction to the simulated characteristics, we estimated the inductance to be about 105 fH. The analysis of resonant properties showed that the shunted tunnel junctions with the small parasitic inductance have a high-frequency performance up to the Nb gap frequency. Josephson array oscillators using 11 such junctions were designed and fabricated to operate at 650 GHz and 1 THz. Shapiro steps induced by Josephson oscillation were clearly observed up to 1 THz. By fitting the step heights to the simulated results, we estimated the output power of the Josephson oscillator delivered to the load resistor to be about 10 µW at 625 GHz and 50 nW at 1 THz.

  • Determination of Resonant Frequencies of Shielded Circular Ring Resonators with Thick Strip Conductors

    Faton TEFIKU  Eikichi YAMASHITA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E76-C No:4
      Page(s):
    649-656

    In this paper, boundary integral equations are derived from the Green's identity of the second kind in circular cylindrical coordinates, and are applied to determine the resonant frequencies of shielded circular ring and disk resonators. The integral equations are numerically solved by discretizating the integration path representing the air-dielectric interface and the surface of thick strip conductor. Because of the choice of the eigen-functions as weighted functions instead of Green's functions, the overall integral path length is shortened and computational time is reduced. Computational results on thick circular disk and ring resonators are compared with other available numerical results and experimental data.