The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] minimum mean-square error(4hit)

1-4hit
  • Spatially Coupled LDPC Coding and Linear Precoding for MIMO Systems Open Access

    Zhonghao ZHANG  Chongbin XU  Li PING  

     
    INVITED PAPER

      Vol:
    E95-B No:12
      Page(s):
    3663-3670

    In this paper, we present a transmission scheme for a multiple-input multiple-output (MIMO) quasi-static fading channel with imperfect channel state information at the transmitter (CSIT). In this scheme, we develop a precoder structure to exploit the available CSIT and apply spatial coupling for further performance enhancement. We derive an analytical evaluation method based on extrinsic information transfer (EXIT) functions, which provides convenience for our precoder design. Furthermore, we observe an area property indicating that, for a spatially coupled system, the iterative receiver can perform error-free decoding even the original uncoupled system has multiple fixed points in its EXIT chart. This observation implies that spatial coupling is useful to alleviate the uncertainty in CSIT which causes difficulty in designing LDPC code based on the EXIT curve matching technique. Numerical results are presented, showing an excellent performance of the proposed scheme in MIMO fading channels with imperfect CSIT.

  • Performance Analysis of MIMO Systems in Spatially Correlated Fading Using Matrix-Monotone Functions

    Eduard A. JORSWIECK  Holger BOCHE  

     
    PAPER-Information Theory

      Vol:
    E89-A No:5
      Page(s):
    1454-1472

    The average performance of a single-user MIMO system under spatially correlated fading and with different types of CSI at the transmitter and with perfect CSI at the receiver was studied in recent work. In contrast to analyzing a single performance metric, e.g. the average mutual information or the average bit error rate, we study an arbitrary representative of the class of matrix-monotone functions. Since the average mutual information as well as the average normalized MSE belong to that class, this universal class of performance functions brings together the information theoretic and signal processing performance metric. We use Lowner's representation of operator monotone functions in order to derive the optimum transmission strategies as well as to characterize the impact of correlation on the average performance. Many recent results derived for average mutual information generalize to arbitrary matrix-monotone performance functions, e.g. the optimal transmit strategy without CSI at the transmitter is equal power allocation. The average performance without CSI is a Schur-concave function with respect to transmit and receive correlation. In addition to this, we derive the optimal transmission strategy with long-term statistics knowledge at the transmitter and propose an efficient iterative algorithm. The beamforming-range is the SNR range in which only one data stream spatially multiplexed achieves the maximum average performance. This range is important since it has a simple receiver structure and well known channel coding. We entirely characterize the beamforming-range. Finally, we derive the generalized water-filling transmit strategy for perfect CSI and characterize its properties under channel correlation.

  • Microphone Array with Minimum Mean-Square Error Short-Time Spectral Amplitude Estimator for Speech Enhancement

    Hongseok KWON  Jongmok SON  Keunsung BAE  

     
    LETTER

      Vol:
    E87-A No:6
      Page(s):
    1491-1494

    This paper describes a new speech enhancement system that employs a microphone array with post-processing based on minimum mean-square error short-time spectral amplitude (MMSE-STSA) estimator. To get more accurate MMSE-STSA estimator in a microphone array, modification and refinement procedure are carried out from each microphone output. Performance of the proposed system is compared with that of other methods using a microphone array. Noise removal experiments for white and pink noises demonstrate the superiority of the proposed speech enhancement system to others with a microphone array in average output SNRs and cepstral distance measures.

  • Adaptive Algorithm Based on Pilot-Channel for MMSE Multiuser Detection in Downlink CDMA

    Yi WANG  Jun WU  Weiling WU  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E83-A No:11
      Page(s):
    2341-2347

    A novel adaptive algorithm based on pilot channel (PCA) for MMSE multiuser detection in downlink CDMA is proposed in this paper. This algorithm uses the information in pilot channel to compute the desired weight vector directly. Compared with conventional adaptive algorithms and blind algorithms, it does not require training sequences nor channel estimation. Analysis shows that the weight vector obtained by the PCA algorithm converges to the Wiener solution globally and its computational complexity is O(N2). Simulation results show that the PCA algorithm can adapt rapidly to the changing environment. The steady state performance can be enhanced by increasing the transmitted power in pilot channel, but is worse than that of conventional recursive least-square (RLS) algorithm in decision-directed mode. Also, performance of the adaptive MMSE detector is much better than that of conventional RAKE receiver.