The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] mobile ad-hoc network(11hit)

1-11hit
  • Multi-Autonomous Robot Enhanced Ad-Hoc Network under Uncertain and Vulnerable Environment Open Access

    Ming FENG  Lijun QIAN  Hao XU  

     
    INVITED PAPER

      Pubricized:
    2019/04/26
      Vol:
    E102-B No:10
      Page(s):
    1925-1932

    This paper studies the problem of real-time routing in a multi-autonomous robot enhanced network at uncertain and vulnerable tactical edge. Recent network protocols, such as opportunistic mobile network routing protocols, engaged social network in communication network that can increase the interoperability by using social mobility and opportunistic carry and forward routing algorithms. However, in practical harsh environment such as a battlefield, the uncertainty of social mobility and complexity of vulnerable environment due to unpredictable physical and cyber-attacks from enemy, would seriously affect the effectiveness and practicality of these emerging network protocols. This paper presents a GT-SaRE-MANET (Game Theoretic Situation-aware Robot Enhanced Mobile Ad-hoc Network) routing protocol that adopt the online reinforcement learning technique to supervise the mobility of multi-robots as well as handle the uncertainty and potential physical and cyber attack at tactical edge. Firstly, a set of game theoretic mission oriented metrics has been introduced to describe the interrelation among network quality, multi-robot mobility as well as potential attacking activities. Then, a distributed multi-agent game theoretic reinforcement learning algorithm has been developed. It will not only optimize GT-SaRE-MANET routing protocol and the mobility of multi-robots online, but also effectively avoid the physical and/or cyber-attacks from enemy by using the game theoretic mission oriented metrics. The effectiveness of proposed design has been demonstrated through computer aided simulations and hardware experiments.

  • Contact Duration-Aware Epidemic Broadcasting in Delay/Disruption-Tolerant Networks Open Access

    Kohei WATABE  Hiroyuki OHSAKI  

     
    PAPER-Network

      Vol:
    E98-B No:12
      Page(s):
    2389-2399

    DTNs (Delay/Disruption-Tolerant Networks) composed of mobile nodes in low node-density environments have attracted considerable attention in recent years. In this paper, we propose a CD-BCAST (Contact Duration BroadCAST) mechanism that can reduce the number of message forwardings while maintaining short message delivery delays in DTNs composed of mobile nodes. The key idea behind CD-BCAST is to increase the probability of simultaneous forwarding by intentionally delaying message forwarding based on the contact duration distribution measured by each node. Through simulations, we show that CD-BCAST needs substantially less message forwardings than conventional mechanisms and it does not require parameter tuning under varieties of communication ranges and node densities.

  • P2P Based Social Network over Mobile Ad-Hoc Networks

    He LI  KyoungSoo BOK  JaeSoo YOO  

     
    LETTER-Information Network

      Vol:
    E97-D No:3
      Page(s):
    597-600

    In this paper, we design an efficient P2P based mobile social network to facilitate contents search over mobile ad hoc networks. Social relation is established by considering both the locations and interests of mobile nodes. Mobile nodes with common interests and nearby locations are recommended as friends and are connected directly in a mobile social network. Contents search is handled by using social relationships of the mobile social network rather than those of the whole network. Since each mobile node manages only neighboring nodes that have common interests, network management overhead is reduced. Results of experiments have shown that our proposed method outperforms existing methods.

  • MANET Multicast Model with Poisson Distribution and Its Performance for Network Coding

    Song XIAO  Ji LU  Ning CAI  

     
    LETTER-Network

      Vol:
    E94-B No:3
      Page(s):
    823-826

    Network Coding (NC) can improve the information transmission efficiency and throughput of data networks. Random Linear Network Coding (RLNC) is a special form of NC scheme that is easy to be implemented. However, quantifying the performance gain of RLNC over conventional Store and Forward (S/F)-based routing system, especially for wireless network, remains an important open issue. To solve this problem, in this paper, based on abstract layer network architecture, we build a dynamic random network model with Poisson distribution describing the nodes joining the network randomly for tree-based single-source multicast in MANET. We then examine its performance by applying conventional Store and Forward with FEC (S/F-FEC) and RLNC methods respectively, and derive the analytical function expressions of average packet loss rate, successful decoding ratio and throughput with respect to the link failure probability. An experiment shows that these expressions have relatively high precision in describing the performance of RLNC. It can be used to design the practical network coding algorithm for multi-hop multicast with tree-based topology in MANET and provide a research tool for the performance analysis of RLNC.

  • Trusted Routing Based on Dynamic Trust Mechanism in Mobile Ad-Hoc Networks

    Sancheng PENG  Weijia JIA  Guojun WANG  Jie WU  Minyi GUO  

     
    PAPER

      Vol:
    E93-D No:3
      Page(s):
    510-517

    Due to the distributed nature, mobile ad-hoc networks (MANETs) are vulnerable to various attacks, resulting in distrusted communications. To achieve trusted communications, it is important to build trusted routes in routing algorithms in a self-organizing and decentralized fashion. This paper proposes a trusted routing to locate and to preserve trusted routes in MANETs. Instead of using a hard security mechanism, we employ a new dynamic trust mechanism based on multiple constraints and collaborative filtering. The dynamic trust mechanism can effectively evaluate the trust and obtain the precise trust value among nodes, and can also be integrated into existing routing protocols for MANETs, such as ad hoc on-demand distance vector routing (AODV) and dynamic source routing (DSR). As an example, we present a trusted routing protocol, based on dynamic trust mechanism, by extending DSR, in which a node makes a routing decision based on the trust values on its neighboring nodes, and finally, establish a trusted route through the trust values of the nodes along the route in MANETs. The effectiveness of our approach is validated through extensive simulations.

  • Multipath Routing with Reliable Nodes in Large-Scale Mobile Ad-Hoc Networks

    Yun GE  Guojun WANG  Qing ZHANG  Minyi GUO  

     
    PAPER-Networks

      Vol:
    E92-D No:9
      Page(s):
    1675-1682

    We propose a Multiple Zones-based (M-Zone) routing protocol to discover node-disjoint multiplath routing efficiently and effectively in large-scale MANETs. Compared with single path routing, multipath routing can improve robustness, load balancing and throughput of a network. However, it is very difficult to achieve node-disjoint multipath routing in large-scale MANETs. To ensure finding node-disjoint multiple paths, the M-Zone protocol divides the region between a source and a destination into multiple zones based on geographical location and each path is mapped to a distinct zone. Performance analysis shows that M-Zone has good stability, and the control complexity and storage complexity of M-Zone are lower than those of the well-known AODVM protocol. Simulation studies show that the average end-to-end delay of M-Zone is lower than that of AODVM and the routing overhead of M-Zone is less than that of AODVM.

  • Looping in OLSRv2 in Mobile Ad-Hoc Networks, Loop Suppression and Loop Correction

    Lee SPEAKMAN  Yasunori OWADA  Kenichi MASE  

     
    PAPER-Network

      Vol:
    E92-B No:4
      Page(s):
    1210-1221

    Transient routing loops have been observed to form in Mobile Ad-hoc Networks running the OLSRv2 proactive link-state routing protocol. The packets falling into loops impact the surrounding network thus degrading throughput even though only a small proportion of the traffic may enter these loops and only for a short time. This becomes significantly more evident when Link Layer Notification is used to catch broken links, inadvertently leading to an increase in the number of loops. Two methods of Loop Detection are introduced and are used to trigger either Loop Suppression by selectively and preemptively discarding the looping packets that are unlikely to reach their destination, or Loop Correction by the notification of the routing protocol to cut the link over which the packet is looping. The newly introduced Loop Suppression and Loop Correction techniques used with Link Layer Notification are shown to significantly increase network performance over plain OLSRv2 and OLSRv2 with Link Layer Notification.

  • Topology Management and Route Establishment Method for Base Station Networks Using Cognitive Radio

    Yujin NOISHIKI  Misato SASAKI  Akira IDOUE  Kazunori TAKEUCHI  

     
    PAPER-Cognitive Network

      Vol:
    E91-B No:1
      Page(s):
    29-37

    Cognitive radio, which utilizes the radio frequency spectrum efficiently by recognizing radio resource availability, is an attractive technology for overcoming the shortage of radio frequency. From the perspective of networking, cognitive radio technologies are also useful since they allow flexible network construction. This paper proposes base station networks using cognitive radio technologies. In order to achieve efficient utilization of the radio frequency spectrum and flexible network construction, we also propose a topology management and route control method for our proposed base station network. Our method shares the status of the wireless links along with topology information and establishes routes by using this information. Through simulation, we evaluate that our method significantly improves the throughput by efficient utilization of the radio frequency spectrum. Moreover, we demonstrate that our method works well when the size of the network gets larger.

  • A Pseudo-Distance Routing (PDR) Algorithm for Mobile Ad-hoc Networks

    Min-Gu LEE  Sunggu LEE  

     
    PAPER

      Vol:
    E89-A No:6
      Page(s):
    1647-1656

    Previous routing algorithms for mobile ad-hoc networks (MANETs) have focused on finding short-distance path(s) between communicating nodes. However, due to the dynamic and unreliable communication nature of MANETs, previously determined paths can easily become disconnected. Although dynamic routing can be used to circumvent this problem, determining a new route each time a packet needs to be sent involves a lot of overhead. An alternative form of dynamic routing involves maintaining valid routes in routing tables, which can be dynamically updated whenever network changes are detected. This paper proposes a new routing algorithm, referred to as pseudo-distance routing (PDR), that supports efficient routing table maintenance and dynamic routing based on such routing tables.

  • P2P Network Topology Control over a Mobile Ad-Hoc Network

    Kiyoshi UEDA  Hiroshi SUNAGA  Sumio MIYAZAKI  

     
    PAPER-Ad hoc, Sensor Network and P2P

      Vol:
    E88-B No:12
      Page(s):
    4490-4497

    This paper discusses effective configuration methods for peer-to-peer (P2P) network topologies within a mobile ad-hoc network. With recent progress in mobile ad-hoc network technology promoting the creation of new and attractive services, we are examining and developing P2P network systems for operation within ad-hoc networks. Our focus is on identifying methods of network-topology control that provide the best balance between performance and availability. We evaluate three methods through computer simulation and field trials from the viewpoints of resource consumption and network integrity, and clarify their domains of applicability. The results are expected to contribute to the design of future P2P networks for operation in mobile ad-hoc networks.

  • A Standard Measure of Mobility for Evaluating Mobile Ad Hoc Network Performance

    Byung-Jae KWAK  Nah-Oak SONG  Leonard E. MILLER  

     
    PAPER-Network

      Vol:
    E86-B No:11
      Page(s):
    3236-3243

    The performance of a mobile ad hoc network (MANET) is related to the efficiency of the routing protocol in adapting to changes in the network topology and the link status. However, the use of many different mobility models without a unified quantitative "measure" of the mobility has made it very difficult to compare the results of independent performance studies of routing protocols. In this paper, a mobility measure for MANETs is proposed that is flexible and consistent. It is flexible because one can customize the definition of mobility using a remoteness function. It is consistent because it has a linear relationship with the rate at which links are established or broken for a wide range of network scenarios. This consistency is the strength of the proposed mobility measure because the mobility measure reliably represents the link change rate regardless of network scenarios.