The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] mode conversion(3hit)

1-3hit
  • Electromagnetic Characteristics of Transverse Acousto-Optic Waveguide Device in Integrated Optics Open Access

    Yasumitsu MIYAZAKI  

     
    INVITED PAPER

      Vol:
    E99-C No:1
      Page(s):
    3-10

    Among several optical devices in integrated optics, the fundamental characteristics of collinear optical switching devices have been studied about optical dielectric waveguides. Conventional waveguide-type acousto-optic (A-O) devices use collinear and longitudinal interactions with mode coupling based on the Bragg condition between optical waves and surface acoustic waves (SAW). Collinear A-O devices of the waveguide-type show sufficient performance for wavelength-selective switching with narrow bandwidths. However, in these collinear A-O devices, interaction time is several microseconds for 10 mm waveguide device length. In A-O devices of optical waveguides using transverse A-O interaction, where SAW propagates transversely to optical wave propagation direction, SAW propagation lengths needed for complete A-O interaction may become 10 µm and interaction time may be several nanoseconds. In this paper, fundamental characteristics of the transverse A-O interaction are studied as an electromagnetic boundary value problem. Refractive indices in optical waveguides induced by A-O effects with SAW are shown by sine functions. Wave field characteristics in periodic structures for transverse directions are analyzed by analytic method of Hill's equations for transverse spectral functions. Electromagnetic fields in regions with periodic structures are discussed by the Mathieu functions and the perturbation method. Dispersion characteristics of A-O eigen modes are studied for wavelengths of optical waves and SAW, with A-O coefficients.

  • Suppression of Mode Conversion by Using Tightly Coupled Asymmetrically Tapered Bend in Differential Lines

    Yoshitaka TOYOTA  Shohei KAN  Kengo IOKIBE  

     
    PAPER

      Vol:
    E98-B No:7
      Page(s):
    1188-1195

    In this paper, we propose a tightly coupled asymmetrically tapered bend to suppress differential-to-common mode conversion caused by bend discontinuity in a pair of differential lines. Tightly coupled symmetrically tapered bends have been so far proposed to suppress the mode conversion by decreasing the path difference in the bend. This approach makes the path difference shorter so that the differential lines are coupled more tightly but the path difference of twice the sum of the line width and the line separation still remains. To suppress the remaining path difference, this paper introduces the use of asymmetric tapers. In addition, two-section tapers are applied to reduce differential-mode reflection increased by the tapers and hence improve differential-mode propagation. A full-wave simulation of a right-angled bend demonstrates that the forward differential-to-common mode conversion is decreased by almost 30 dB compared to the symmetrically tapered bend and that the differential-mode reflection coefficient is reduced to the same amount as that of the classic bend. Also, the generality of the proposed bend structure is discussed.

  • Excitation of Surface Plasmons on a Metal Grating and Its Application to an Index Sensor

    Yoichi OKUNO  Taikei SUYAMA  Rui HU  Sailing HE  Toyonori MATSUDA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E90-C No:7
      Page(s):
    1507-1514

    Excitation of plasmons on the surface of a metal grating placed in planar or conical mounting is investigated in detail. Most of the results of numerical computations are compared with experimental data. When a TM wave illuminates a metal grating, total or partial absorption of incident light occurs at angles of incidence at which the plasmon surface waves are excited. In planar mounting the absorption is generally strong and nearly total absorption is observed. While in conical mounting, it is not so strong as that in the planar mounting case and a considerable amount of incident power is reflected. This, however, is accompanied by enhanced TM-TE mode conversion and the greater part of the reflected wave is in the TE polarization. The reciprocal of the TM-wave efficiency, hence, is a practical measure in finding the angles of incidence at which the plasmons are excited. Because the angles are sensitive functions of the refractive index of a material over the grating surface, this phenomenon can be used as an index sensor.