The search functionality is under construction.
The search functionality is under construction.

Suppression of Mode Conversion by Using Tightly Coupled Asymmetrically Tapered Bend in Differential Lines

Yoshitaka TOYOTA, Shohei KAN, Kengo IOKIBE

  • Full Text Views

    0

  • Cite this

Summary :

In this paper, we propose a tightly coupled asymmetrically tapered bend to suppress differential-to-common mode conversion caused by bend discontinuity in a pair of differential lines. Tightly coupled symmetrically tapered bends have been so far proposed to suppress the mode conversion by decreasing the path difference in the bend. This approach makes the path difference shorter so that the differential lines are coupled more tightly but the path difference of twice the sum of the line width and the line separation still remains. To suppress the remaining path difference, this paper introduces the use of asymmetric tapers. In addition, two-section tapers are applied to reduce differential-mode reflection increased by the tapers and hence improve differential-mode propagation. A full-wave simulation of a right-angled bend demonstrates that the forward differential-to-common mode conversion is decreased by almost 30 dB compared to the symmetrically tapered bend and that the differential-mode reflection coefficient is reduced to the same amount as that of the classic bend. Also, the generality of the proposed bend structure is discussed.

Publication
IEICE TRANSACTIONS on Communications Vol.E98-B No.7 pp.1188-1195
Publication Date
2015/07/01
Publicized
Online ISSN
1745-1345
DOI
10.1587/transcom.E98.B.1188
Type of Manuscript
Special Section PAPER (Special Section on Electromagnetic Compatibility Technology in Conjunction with Main Topics of EMC'14/Tokyo)
Category

Authors

Yoshitaka TOYOTA
  Okayama University
Shohei KAN
  Okayama University
Kengo IOKIBE
  Okayama University

Keyword