The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] molecular devices(1hit)

1-1hit
  • Pattern Formation in Reaction-Diffusion Enzyme Transistor Circuits

    Masahiko HIRATSUKA  Takafumi AOKI  Tatsuo HIGUCHI  

     
    PAPER

      Vol:
    E82-A No:9
      Page(s):
    1809-1817

    This paper explores a possibility of constructing massively parallel molecular computing systems using molecular electronic devices called enzyme transistors. The enzyme transistor is, in a sense, an artificial catalyst which selects a specific substrate molecule and transforms it into a specific product. Using this primitive function, various active continuous media for signal transfer/processing can be realized. Prominent examples discussed in this paper are: (i) Turing pattern formation and (ii) excitable wave propagation in a two-dimensional enzyme transistor array. This paper demonstrates the potential of enzyme transistors for creating reaction-diffusion dynamics that performs useful computations in a massively parallel fashion.