1-10hit |
Abolfazl GHASSEMI T. Aaron GULLIVER
Tone reservation (TR) has been proposed for peak to average power reduction (PAPR) in real-baseband multicarrier systems [1]. In this technique, the peak reduction signal is computed by optimization via linear programming (LP). As shown in [1], the computational complexity of the LP optimization is largely determined by the complexity of the inverse fast Fourier transform (IFFT) algorithm. In this paper, we use submatrices of the inverse fast Fourier transform (IFFT) to reduce the number of constraints in the LP-based optimization. We show that a significant complexity reduction can be achieved compared to the conventional TR algorithm, with similar PAPR reduction.
Mohammed ABDEL-HAFEZ Zexian LI Matti LATVA-AHO
In this paper, the average bit error probability of uplink and downlink Multicarrier Code Division Multiple Access (MC-CDMA) system using coherent Maximal-Ratio Combining (MRC) and Equal Gain Combining (EGC) receivers is evaluated for frequency selective Nakagami fading channels. The analysis assumes that different subcarriers experience independent fading channels, but not necessary identically distributed. The analysis is based on Gaussian approximation of the multiple access interference. Generalized bit error probability (BEP) expressions for both uplink and downlink with MRC and EGC receivers were derived. The analytical results are supported with simulation results. The effect of fading parameters, number of users, and number of subcarriers were presented. The BEP performance of the EGC receiver in the uplink is highly influenced by the fading parameter compared with the MRC receiver. The EGC receiver outperforms the MRC receiver in the downlink, but the MRC receiver gives almost the same performance as the EGC in the uplink.
A new bandwidth-efficient asynchronous multicarrier DS CDMA scheme is proposed for the uplink. In this new scheme, each user employs a set of FIR filters whose impulse responses are a mutually orthogonal (MO) complementary set of sequences. The intentional inter-symbol interference (ISI) and multiple access interference (MAI) are eliminated by the properties of these sequences. We also propose applying this new scheme in a DS CDMA packet network in which slotted ALOHA or pure ALOHA protocol is used. Packet throughput figures are obtained for the new ALOHA/bandwidth-efficient asynchronous MC DS CDMA packet network. Numerical results are given for both slotted and pure ALOHA cases. With the same bandwidth and number of simultaneous users, the throughput is compared favorably to similar figures for single-carrier DS CDMA with random spreading sequences.
Lev GOLDFELD Vladimir LYANDRES
Closed-loop power control providing maximum capacity of the multicarrier channel with frequency selective Nakagami fading is investigated. Use of the famous Gallager channel capacity (water-filling) theorem with the assumption of limited transmitter power and independent fading in partial channels leads to the algorithm for their optimal power loading. Analytical expressions for the capacity of the multicarrier channel as a function of the number of its subchannels and the fading parameters are derived for the cases of Optimal Power Distribution (OPD) and Equal Power Distribution (EPD). The dependence of the capacity gain on the OPD system order, the fading depth and the average SNR due the optimal power control is obtained. Comparison of the power efficiencies of the systems with OPD and EPD is presented.
Shoichiro YAMASAKI Hirokazu TANAKA
A multicarrier modulation called orthogonal frequency division multiplex (OFDM) is attracting attention as a transmission scheme which is robust against multipath propagation. A major disadvantage of OFDM is that it is sensitive to nonlinear distortion due to its wide transmission amplitude range. The scope of this study is to cope with the nonlinear problem. We propose a nonlinear distortion compensation scheme using an iterative method which has been applied to an image signal restoration.
Hideyuki MATSUTANI Yukitoshi SANADA Masao NAKAGAWA
Pre-decorrelation is a method of achieving orthogonalization between multiple signals on the forward link. This technique can achieve orthogonalization in a flat fading channel, however, the orthogonality does not clearly appear in a multipath fading channel because of interchip interference. In order to eliminate the effect of multipath and prevent interchip interference, multicarrier modulation can be employed. In this paper we propose a multicarrier pre-decorrelation technique which combines multicarrier modulation with pre-decorrelation. Computer simulation results show that the proposed technique can achieve orthogonalization in a multipath fading channel.
A novel block coding scheme based on complementary sequences which is capable of both error correction and peak to average power ratio reduction has been proposed for M-ary PSK multicarrier systems. Generator matrices for the number of carriers N = 2k where k = 2,3,...are derived. The effectiveness of the scheme has been confirmed by computer simulations.
This paper discusses advanced wireless communication technologies for achieving future high-speed mobile radios. Mainly, five technical fields are considered, that is, multi-level modulation for transmitting high-capacity information signal, advanced adaptive wireless system flexibly changing modulation level, symbol rate and traffic according to fading conditions, adaptive multicarrier system transmitting multimedia signals by changing the number of carrier according to the capacity of the signals, new CDMA techniques for mapping different bit rate services onto the same allocated bandwidth at the same time, and optical-linked microcellular communication system with millimeter wave air interface.
Yoshiyuki KINUGAWA Kazuya SATO Minoru OKADA Shinsuke HARA Norihiko MORINAGA
In order to construct a high-capacity and high-reliable indoor wireless communications system, it is essential to design the modulation/demodulation, coding and access schemes with high and variable data rate transmission capabilities, which meet the technical requirements inherent to wireless communications, i.e., high frequency utilization efficiency and robustness for fading. In this paper, we propose the frequency and time division multiple access with demand-assignment (FTDMA/DA) using multicarrier modulation as a frequency and time synchronous answer to meet the requirements, and analyze the performance of the FTDMA/DA system, taking account of teletraffic characteristics of multimedia information sources.
Minoru OKADA Shinsuke HARA Norihiko MORINAGA
A multicarrier modulation is considered as an effective technique in high speed digital transmission under the multipath fading. In this paper, we theoretically analyze the bit error rate (BER) performance of the multicarrier modulation/differential detection scheme, and show the trade-offs between the BERs and the number of carriers or the guard period to clarify the optimum values to minimize the BER in the number of carriers and the guard period.