The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] multiclass classification(5hit)

1-5hit
  • CAMRI Loss: Improving the Recall of a Specific Class without Sacrificing Accuracy

    Daiki NISHIYAMA  Kazuto FUKUCHI  Youhei AKIMOTO  Jun SAKUMA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/01/23
      Vol:
    E106-D No:4
      Page(s):
    523-537

    In real world applications of multiclass classification models, misclassification in an important class (e.g., stop sign) can be significantly more harmful than in other classes (e.g., no parking). Thus, it is crucial to improve the recall of an important class while maintaining overall accuracy. For this problem, we found that improving the separation of important classes relative to other classes in the feature space is effective. Existing methods that give a class-sensitive penalty for cross-entropy loss do not improve the separation. Moreover, the methods designed to improve separations between all classes are unsuitable for our purpose because they do not consider the important classes. To achieve the separation, we propose a loss function that explicitly gives loss for the feature space, called class-sensitive additive angular margin (CAMRI) loss. CAMRI loss is expected to reduce the variance of an important class due to the addition of a penalty to the angle between the important class features and the corresponding weight vectors in the feature space. In addition, concentrating the penalty on only the important class hardly sacrifices separating the other classes. Experiments on CIFAR-10, GTSRB, and AwA2 showed that CAMRI loss could improve the recall of a specific class without sacrificing accuracy. In particular, compared with GTSRB's second-worst class recall when trained with cross-entropy loss, CAMRI loss improved recall by 9%.

  • An Improved Online Multiclass Classification Algorithm Based on Confidence-Weighted

    Ji HU  Chenggang YAN  Jiyong ZHANG  Dongliang PENG  Chengwei REN  Shengying YANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/03/15
      Vol:
    E104-D No:6
      Page(s):
    840-849

    Online learning is a method which updates the model gradually and can modify and strengthen the previous model, so that the updated model can adapt to the new data without having to relearn all the data. However, the accuracy of the current online multiclass learning algorithm still has room for improvement, and the ability to produce sparse models is often not strong. In this paper, we propose a new Multiclass Truncated Gradient Confidence-Weighted online learning algorithm (MTGCW), which combine the Truncated Gradient algorithm and the Confidence-weighted algorithm to achieve higher learning performance. The experimental results demonstrate that the accuracy of MTGCW algorithm is always better than the original CW algorithm and other baseline methods. Based on these results, we applied our algorithm for phishing website recognition and image classification, and unexpectedly obtained encouraging experimental results. Thus, we have reasons to believe that our classification algorithm is clever at handling unstructured data which can promote the cognitive ability of computers to a certain extent.

  • Multiclass Probabilistic Classification for Support Vector Machines

    Ji-Sang BAE  Jong-Ok KIM  

     
    LETTER-Human-computer Interaction

      Pubricized:
    2015/02/23
      Vol:
    E98-D No:6
      Page(s):
    1251-1255

    Support Vector Machine (SVM) is one of the most widely used classifiers to categorize observations. This classifier deterministically selects a class that has the largest score for a classification output. In this letter, we propose a multiclass probabilistic classification method that reflects the degree of confidence. We apply the proposed method to age group classification and verify the performance.

  • Specific Random Trees for Random Forest

    Zhi LIU  Zhaocai SUN  Hongjun WANG  

     
    LETTER-Artificial Intelligence, Data Mining

      Vol:
    E96-D No:3
      Page(s):
    739-741

    In this study, a novel forest method based on specific random trees (SRT) was proposed for a multiclass classification problem. The proposed SRT was built on one specific class, which decides whether a sample belongs to a certain class. The forest can make a final decision on classification by ensembling all the specific trees. Compared with the original random forest, our method has higher strength, but lower correlation and upper error bound. The experimental results based on 10 different public datasets demonstrated the efficiency of the proposed method.

  • Multiclass Boosting Algorithms for Shrinkage Estimators of Class Probability

    Takafumi KANAMORI  

     
    PAPER-Artificial Intelligence and Cognitive Science

      Vol:
    E90-D No:12
      Page(s):
    2033-2042

    Our purpose is to estimate conditional probabilities of output labels in multiclass classification problems. Adaboost provides highly accurate classifiers and has potential to estimate conditional probabilities. However, the conditional probability estimated by Adaboost tends to overfit to training samples. We propose loss functions for boosting that provide shrinkage estimator. The effect of regularization is realized by shrinkage of probabilities toward the uniform distribution. Numerical experiments indicate that boosting algorithms based on proposed loss functions show significantly better results than existing boosting algorithms for estimation of conditional probabilities.