The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] multihop(55hit)

1-20hit(55hit)

  • Overloaded MIMO Bi-Directional Communication with Physical Layer Network Coding in Heterogeneous Multihop Networks Open Access

    Satoshi DENNO  Tomoya TANIKAWA  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/07/24
      Vol:
    E106-B No:11
      Page(s):
    1228-1236

    This paper proposes overloaded multiple input multiple output (MIMO) bi-directional communication with physical layer network coding (PLNC) to enhance the transmission speed in heterogeneous wireless multihop networks where the number of antennas on the relay is less than that on the terminals. The proposed overloaded MIMO communication system applies precoding and relay filtering to reduce computational complexity in spite of the transmission speed. An eigenvector-based filter is proposed for the relay filter. Furthermore, we propose a technique to select the best filter among candidates eigenvector-based filters. The performance of the proposed overloaded MIMO bi-directional communication is evaluated by computer simulation in a heterogeneous wireless 2-hop network. The proposed filter selection technique attains a gain of about 1.5dB at the BER of 10-5 in a 2-hop network where 2 antennas and 4 antennas are placed on the relay and the terminal, respectively. This paper shows that 6 stream spatial multiplexing is made possible in the system with 2 antennas on the relay.

  • Multi-Input Physical Layer Network Coding in Two-Dimensional Wireless Multihop Networks

    Hideaki TSUGITA  Satoshi DENNO  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/08/10
      Vol:
    E106-B No:2
      Page(s):
    193-202

    This paper proposes multi-input physical layer network coding (multi-input PLNC) for high speed wireless communication in two-dimensional wireless multihop networks. In the proposed PLNC, all the terminals send their packets simultaneously for the neighboring relays to maximize the network throughput in the first slot, and all the relays also do the same to the neighboring terminals in the second slot. Those simultaneous signal transmissions cause multiple signals to be received at the relays and the terminals. Signal reception in the multi-input PLNC uses multichannel filtering to mitigate the difficulties caused by the multiple signal reception, which enables the two-input PLNC to be applied. In addition, a non-linear precoding is proposed to reduce the computational complexity of the signal detection at the relays and the terminals. The proposed multi-input PLNC makes all the terminals exchange their packets with the neighboring terminals in only two time slots. The performance of the proposed multi-input PLNC is confirmed by computer simulation. The proposed multi-input physical layer network coding achieves much higher network throughput than conventional techniques in a two-dimensional multihop wireless network with 7 terminals. The proposed multi-input physical layer network coding attains superior transmission performance in wireless hexagonal multihop networks, as long as more than 6 antennas are placed on the terminals and the relays.

  • Multihop TDMA-Based Wireless Networked Control Systems Robust against Bursty Packet Losses: A Two-Path Approach

    Keisuke NAKASHIMA  Takahiro MATSUDA  Masaaki NAGAHARA  Tetsuya TAKINE  

     
    PAPER-Network

      Pubricized:
    2019/08/27
      Vol:
    E103-B No:3
      Page(s):
    200-210

    Wireless networked control systems (WNCSs) are control systems whose components are connected through wireless networks. In WNCSs, a controlled object (CO) could become unstable due to bursty packet losses in addition to random packet losses and round-trip delays on wireless networks. In this paper, to reduce these network-induced effects, we propose a new design for multihop TDMA-based WNCSs with two-disjoint-path switching, where two disjoint paths are established between a controller and a CO, and they are switched if bursty packet losses are detected. In this system, we face the following two difficulties: (i) link scheduling in TDMA should be done in such a way that two paths can be switched without rescheduling, taking into account of the constraint of control systems. (ii) the conventional cross-layer design method of control systems is not directly applicable because round-trip delays may vary according to the path being used. Therefore, to overcome the difficulties raised by the two-path approach, we reformulate link scheduling in multihop TDMA and cross-layer design for control systems. Simulation results confirm that the proposed WNCS achieves better performance in terms of the 2-norm of CO's states.

  • NerveNet Architecture and Its Pilot Test in Shirahama for Resilient Social Infrastructure Open Access

    Masugi INOUE  Yasunori OWADA  

     
    INVITED PAPER-Network

      Pubricized:
    2017/03/22
      Vol:
    E100-B No:9
      Page(s):
    1526-1537

    From past experience of the large-scale cutoff of existing networks as a result of the East Japan Great Earthquake and tsunamis, and from previous research on stabilizing ad hoc networks that lack control mechanisms, we have strengthened the resilience of NerveNet. NerveNet was originally designed and developed as an access network for providing context-aware services with the use of sensors and actuators. Thus, at present, it has the capability to enable resilient information sharing and communications in a region even if access to the Internet is impossible in emergency situations. NerveNet is composed of single or multiple base stations interconnected by a variety of Ethernet-based wired or wireless transmission systems. A network is formed using line, star, tree, or mesh topology. Network and data management works in each base station in a distributed manner, resulting in the resilience of this system. In collaboration with the town of Shirahama in Wakayama prefecture in Japan, we have been conducting a pilot test with the NerveNet testbed. The test includes nine base stations interconnected by 5.6-GHz Wi-Fi and Fixed Wireless Access (FWA), providing tourists and residents with Internet access. In the future, we expect that not only NerveNet but also other novel technologies will contribute to solving social problems and enriching people's lives.

  • Efficient Resource Allocation for Proportional Fair Schedulers in Multihop Relay Networks

    Taejoon KIM  Byung-Kwan KIM  Heejung YU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E99-A No:9
      Page(s):
    1750-1752

    In this letter, we present an efficient resource allocation algorithm for proportional fair schedulers in mobile multihop relay (MMR) networks. We consider a dual-hop cellular network assisted with a decode-and-forward relay station (RS). Since additional radio resources should be allocated in the wireless link between a base station (BS) and an RS, it is very important to determine the optimal amount of resources for this BS-to-RS link. The proposed resource allocation algorithm maximizes the utility of the overall MMR network in a proportionally fair point of view.

  • A Graphical Game Theoretic Approach to Optimization of Energy Efficiency in Multihop Wireless Sensor Networks

    Hui JING  Hitoshi AIDA  

    This paper was deleted on February 16, 2024 because it was found to be a a illegal submission (see details in the pdf file).
     
    PAPER-Network

      Vol:
    E99-B No:8
      Page(s):
    1789-1798

    Recently, multihop wireless sensor networks (WSNs) are widely developed and applied to energy efficient data collections from environments by establishing reliable transmission radio links and employing data aggregation algorithms, which can eliminate redundant transmissions and provide fusion information. In this paper, energy efficiency which consists of not only energy consumptions but also the amount of received data by the base station, as the performance metric to evaluate network utilities is presented for achieving energy efficient data collections. In order to optimize energy efficiency for improvements of network utilization, we firstly establish a graphical game theoretic model for energy efficiency in multihop WSNs, considering message length, practical energy consumptions and packet success probabilities. Afterwards, we propose a graphical protocol for performance optimization from Nash equilibrium of the graphical game theory. The approach also consists of the distributed protocol for generating optimum tree networks in practical WSNs. The experimental results show energy efficient multihop communications can be achieved by optimum tree networks of the approach. The quantitative evaluation and comparisons with related work are presented for the metric with respect to network energy consumptions and the amount of received data by the base station. The performances of our proposal are improved in all experiments. As an example, our proposal can achieve up to about 52% energy efficiency more than collection tree protocol (CTP). The corresponding tree structure is provided for the experiment.

  • Effective Data Collection Scheme by Mobile Agent over Wireless Sensor Network

    Takaaki SUETSUGU  Takayuki TORIKAI  Hiroshi FURUKAWA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E99-B No:3
      Page(s):
    749-757

    In tree-based wireless sensor networks (WSNs), multihop sensor nodes require a longer time frame to send sensed data to a sink node as the number of hops increases. The time taken for delivery of sensed data becomes a critical issue when a large WSN is deployed. This paper proposes a new data collection scheme with rapid data delivery that utilizes the so-called mobile agent technique. The proposed scheme achieves high data collection efficiency while not relying on route optimization unlike conventional data collection techniques. Simulation results show that the larger the size or the maximum hops of the network, the more effective the proposed scheme becomes. Effectiveness of the proposed scheme is also confirmed through field experiments with actual sensor devices.

  • Outage Performance of MIMO Multihop Relay Network with MRT/RAS Scheme

    Xinjie WANG  Yuzhen HUANG  Yansheng LI  Zhe-Ming LU  

     
    LETTER-Information Network

      Pubricized:
    2015/04/20
      Vol:
    E98-D No:7
      Page(s):
    1381-1385

    In this Letter, we investigate the outage performance of MIMO amplify-and-forward (AF) multihop relay networks with maximum ratio transmission/receiver antenna selection (MRT/RAS) over Nakagami-m fading channels in the presence of co-channel interference (CCI) or not. In particular, the lower bounds for the outage probability of MIMO AF multihop relay networks with/without CCI are derived, which provides an efficient means to evaluate the joint effects of key system parameters, such as the number of antennas, the interfering power, and the severity of channel fading. In addition, the asymptotic behavior of the outage probability is investigated, and the results reveal that the full diversity order can be achieved regardless of CCI. In addition, simulation results are provided to show the correctness of our derived analytical results.

  • Performance Analysis and Optimum Resource Allocation in Mobile Multihop Relay System

    Taejoon KIM  Seong Gon CHOI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:6
      Page(s):
    1078-1085

    This paper analyzes the performance of a mobile multihop relay (MMR) system which uses intermediate mobile relay stations (RSs) to increase service coverage area and capacity of a communication system. An analytical framework for an MMR system is introduced, and a scheme for allocating the optimum radio resources to an MMR system is presented. It is very challenging to develop an analytical framework for an MMR system because more than two wireless links should be considered in analyzing the performance of such a system. Here, the joint effect of a finite queue length and an adaptive modulation and coding (AMC) scheme in both a base station (BS) and an RS are considered. The traffic characteristics from BS to RS are analyzed, and a three-dimensional finite-state Markov chain (FSMC) is built for the RS which considers incoming traffic from the BS as well. The RS packet loss rate and the RS average throughput are also derived. Moreover, maximum throughput is achieved by optimizing the amount of radio resources to be allocated to the wireless link between a BS and an RS.

  • Realistic Analysis of Energy Efficiency in Multihop Wireless Sensor Networks

    Hui JING  Hitoshi AIDA  

     
    PAPER-Wireless Network

      Vol:
    E97-D No:12
      Page(s):
    3016-3024

    As one of the most widely investigated studies in wireless sensor networks (WSNs), multihop networking is increasingly developed and applied for achieving energy efficient communications and enhancing transmission reliability. To accurately and realistically analyze the performance metric (energy efficiency), firstly we provide a measurement of the energy dissipation for each state and establish a practical energy consumption model for a WSN. According to the analytical model of connectivity, Gaussian approximation approaches to experimental connection probability are expressed for optimization problem on energy efficiency. Moreover, for integrating experimental results with theories, we propose the methodology in multihop wireless sensor networks to maximize efficiency by nonlinear programming, considering energy consumptions and the total quantity of sensing data to base station. Furthermore, we present evaluations adapting to various wireless sensor networks quantitatively with respect to energy efficiency and network configuration, in view of connectivity, the length of data, maximum number of hops and total number of nodes. As the consequence, the realistic analysis can be used in practical applications, especially on self-organization sensor networks. The analysis also shows correlations between the efficiency and maximum number of hops, that is the multihop systems with several hops can accommodate enough devices in ordinary applications. In this paper, our contribution distinguished from others is that our model and analysis are extended from experiments. Therefore, the results of analysis and proposal can be conveniently applied to actual networks.

  • Study of a Multiuser Resource Allocation Scheme for a 2-Hop OFDMA Virtual Cellular Network

    Gerard J. PARAISON  Eisuke KUDOH  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:8
      Page(s):
    2112-2118

    In the next generation mobile network, the demand for high data rate transmission will require an increase in the transmission power if the current mobile cellular network architecture is used. Multihop networks are considered to be a key solution to this problem. However, a new resource allocation algorithm is also required for the new network architecture. In this paper, we propose a resource allocation scheme for a parallel relay 2-hop OFDMA virtual cellular network (VCN) which can be applied in a multiuser environment. We evaluate, by computer simulation, the ergodic channel capacity of the VCN using the proposed algorithm, and compare the results with those of the conventional single hop network (SHN). In addition, we analyze the effect of the location of the relay wireless ports on the ergodic channel capacity of the VCN. We also study the degree of fairness of the VCN, using the proposed scheme, compared with that of the SHN. For low transmission power, the simulation results show: a) the VCN can provide a better ergodic channel capacity and a better degree of fairness than the SHN, b) the distance ratio for which the ergodic channel capacity of the VCN is maximal can be found in the interval 0.20.3, c) the ergodic channel capacity of the VCN remains better than that of the SHN as the number of users increases, and d) as the distance between the relay WPs and the base station increases, the channel capacity of VCN approaches that of the SHN.

  • Maximum Multiflow in Wireless Network Coding

    Jinyi ZHOU  Shutao XIA  Yong JIANG  Haitao ZHENG  Laizhong CUI  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E96-B No:7
      Page(s):
    1780-1790

    In a multihop wireless network, wireless interference is a crucial factor in the maximum multiflow (MMF) problem, which studies the maximum throughput between multiple pairs of sources and sinks with a link schedule to support it. In this paper, we observe that network coding could help to decrease the impact of wireless interference, and thus propose a framework to study the MMF problem for multihop wireless networks with network coding. Firstly, a network model is established to describe the new conflict relations and schedulability modified by network coding. Next, we formulate the MMF problem to compute the maximum throughput of multiple unicast flows supported by the multihop wireless network with network coding, and show that its capacity region could be enlarged by performing network coding. Finally, we show that determining the capacity region of a multihop wireless network with network coding is an NP-hard problem, and thus propose a greedy heuristic algorithm, called coding-first collecting (CFC), to determine a capacity subregion of the network. We also show that finding an optimal hyperarc schedule to meet a given link demand function is NP-hard, and propose a polynomial algorithm, called coding-first scheduling (CFS), to find an approximate fractional hyperarc schedule in the multihop wireless network with network coding. A numerical analysis of a grid wireless network and a random wireless network is presented to demonstrate the efficiencies of the CFC algorithm and the CFS algorithm based on the framework.

  • Proportionally Quasi-Fair Scheduling for End-to-End Rates in Multi-Hop Wireless Networks

    Dang-Quang BUI  Won-Joo HWANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:3
      Page(s):
    820-829

    Known an a criterion that solves the trade-off between fairness and efficiency, proportional fairness is well-studied in cellular networks in the Qualcomm High Data Rate System. In multi-hop wireless networks, proportional fairness is solved by maximizing the logarithmic aggregate utility function. However, this approach can deal with instantaneous rates only where long term fairness is to be targeted. In this case, cumulative rates are more suitable. This paper proposes a framework for multi-hop wireless networks to guarantee fairness of cumulative data rates. The framework can be extended to other kinds of fairness such as max-min fairness, and to more complex networks, multi-channel multi-radio wireless networks.

  • The Number of Isolated Nodes in a Wireless Network with a Generic Probabilistic Channel Model

    Chao-Min SU  Chih-Wei YI  Peng-Jun WAN  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E96-B No:2
      Page(s):
    595-604

    A wireless node is called isolated if it has no links to other nodes. The number of isolated nodes in a wireless network is an important connectivity index. However, most previous works on analytically determining the number of isolated nodes were not based on practical channel models. In this work, we study this problem using a generic probabilistic channel model that can capture the behaviors of the most widely used channel models, including the disk graph model, the Bernoulli link model, the Gaussian white noise model, the Rayleigh fading model, and the Nakagami fading model. We derive the expected number of isolated nodes and further prove that their distribution asymptotically follows a Poisson distribution. We also conjecture that the nonexistence of isolated nodes asymptotically implies the connectivity of the network, and that the probability of connectivity follows the Gumbel function.

  • Implementation of a TDMA Based Wireless Network Coding Prototype System with Ethernet Frame Aggregation

    Nobuaki OTSUKI  Takatoshi SUGIYAMA  

     
    PAPER

      Vol:
    E95-B No:12
      Page(s):
    3752-3759

    This paper presents the feasibility of a wireless network coding prototype system based on time division multiple access using the global positioning system to facilitate the time synchronization of wireless nodes. We evaluate the system throughput of the prototype system with wireless network coding and Ethernet frame aggregation in the full buffer traffic environment assuming web browsing and voice over Internet protocol. The experimental results show that the prototype system improves the system throughput by approximately 1.85-fold compared to a system without wireless network coding or aggregation even in a multipath Rician fading environment.

  • Time Slot Assignment Algorithms to Upstream Links for Decreasing Transmission Latency in IEEE 802.16j Networks

    Go HASEGAWA  Shinpei TANAKA  Yoshiaki TANIGUCHI  Hirotaka NAKANO  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E95-B No:5
      Page(s):
    1793-1801

    In this paper, the authors focus on upstream transmission in TDMA-based IEEE 802.16j and propose two time slot assignment algorithms to decrease end-to-end transmission latency. One of the proposed algorithms assigns time slots considering the hop count from a gateway node, and the other takes the path from the relay node to the gateway node into account. In addition, a restriction in assigning time slots is introduced to reduce the delay at each relay node. The algorithms with the restriction assign later time slots considering the time slot order of links connecting a relay node. The performance of the proposed algorithms is evaluated through simulation experiments from the viewpoints of frame size and end-to-end transmission latency, and it is confirmed that the proposed algorithms achieve small transmission latency regardless of packet generation rate in the network, and decrease the transmission latency by up to 70% compared with the existing algorithm.

  • Outage Analysis of Cognitive Multihop Networks under Interference Constraints

    Vo Nguyen Quoc BAO  Trung Quang DUONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:3
      Page(s):
    1019-1022

    In this letter, we consider a cognitive radio based multihop network under the spectrum sharing underlay paradigm. By taking into account the interference constraints, we present an exact closed-form expression for outage probability, which is valid for the whole signal-to-noise ratio regime. In addition, some numerical examples of interest that study the effect of the number of hops and/or the interferer threshold on primary users are illustrated and discussed. Numerical results show that multihop systems still offer a considerable gain as compared to direct transmission under the same limit of interference.

  • GTS Allocation Scheme for Bidirectional Voice Traffic in IEEE 802.15.4 Multihop Networks

    Junwoo JUNG  Hoki BAEK  Jaesung LIM  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:2
      Page(s):
    493-508

    The IEEE 802.15.4 protocol is considered a promising technology for low-cost low-power wireless personal area networks. Researchers have discussed the feasibility of voice communications over IEEE 802.15.4 networks. To this end, the personal area network (PAN) coordinator allocates guaranteed time slots (GTSs) for voice communications in the beacon-enabled mode of IEEE 802.15.4. Although IEEE 802.15.4 is capable of supporting voice communications by GTS allocation, it is impossible to accommodate voice transmission beyond two hops due to the excessive transmission delay. In this paper, we propose a GTS allocation scheme for bidirectional voice traffic in IEEE 802.15.4 multihop networks. The goal of our proposed scheme is to achieve low end-to-end delay and packet drop ratio without a complex allocation algorithm. Thus, the proposed scheme allocates GTSs to devices for successful completion of voice transmission in a superframe duration. The proposed scheme also considers transceiver switching delay. This is relatively large compared to a time slot due to the low-cost and low-gain antenna designs. We analyze and validate the proposed scheme in terms of average end-to-end delay and packet drop ratio. Our scheme has lower end-to-end delay and packet drop ratio than the basic IEEE 802.15.4 GTS allocation scheme.

  • Performance Analysis of Two-Hop Cellular Systems in Transparent and Non-transparent Modes

    Se-Jin KIM  Seung-Yeon KIM  Ryong OH  Seungwan RYU  Hyong-Woo LEE  Choong-Ho CHO  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E94-B No:11
      Page(s):
    3107-3115

    In this paper, we evaluate the downlink performance of Transparent mode (T-mode) and Non-Transparent mode (NT-mode) in a two-hop cellular system based on IEEE 802.16j. In particular, we evaluate the performance in terms of the system capacity, optimal resource allocation, and outage probability using Monte Carlo simulation with various system parameters such as different Frequency Reuse Factors (FRFs) and the distance between Base Station (BS) and Relay Station (RS). To analyze the Signal to Interference and Noise Ratio (SINR) of the access and relay links, an SINR model is introduced for cellular multihop systems considering intra- and inter-cell interferences. Then, we present a method of optimal resource allocation for the Access Zone (AZ) and Relay Zone (RZ) to maximize the system capacity. Consequently, the simulation results provide an insight into choosing the appropriate RS position and optimal resource allocation. Through numerical examples, it is found that the FRFs of two and three are good choices to achieve the highest capacity with low outage in T- and NT-modes, respectively.

  • Interference Coordination in Compact Frequency Reuse for Multihop Cellular Networks

    Yue ZHAO  Xuming FANG  Zhengguang ZHAO  

     
    PAPER-Mobile Information Network and Personal Communications

      Vol:
    E93-A No:11
      Page(s):
    2312-2319

    Continuously increasing the bandwidth to enhance the capacity is impractical because of the scarcity of spectrum availability. Fortunately, on the basis of the characteristics of the multihop cellular networks (MCNs), a new compact frequency reuse scheme has been proposed to provide higher spectrum utilization efficiency and larger capacity without increasing the cost on network. Base stations (BSs) and relay stations (RSs) could transmit simultaneously on the same frequency according to the compact frequency reuse scheme. In this situation, however, mobile stations (MSs) near the coverage boundary will suffer serious interference and their traffic quality can hardly be guaranteed. In order to mitigate the interference while maintaining high spectrum utilization efficiency, this paper introduces a fractional frequency reuse (FFR) scheme into multihop cellular networks, in which the principle of FFR scheme and characteristics of frequency resources configurations are described, then the transmission (Tx) power consumption of BS and RSs is analyzed. The proposed scheme can both meet the requirement of high traffic load in future cellular system and maximize the benefit by reducing the Tx power consumption. Numerical results demonstrate that the proposed FFR in compact frequency reuse achieves higher cell coverage probability and larger capacity with respect to the conventional schemes.

1-20hit(55hit)