The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] multilevel coding(4hit)

1-4hit
  • Multilevel Concatenated Space-Time Block Codes

    Shang-Chih MA  

     
    LETTER-Coding Theory

      Vol:
    E93-A No:10
      Page(s):
    1845-1847

    An alternative design for constructing multilevel space-time codes is proposed. For a given space-time block code, we combine several component codes in conjunction with set partitioning of the expanded signal constellation according to the coding gain distance criterion. The error performance of an example code is compared with a traditional multilevel space-time code in computer simulation.

  • Hierarchical Coding Based on Multilevel Bit-Interleaved Channels

    Motohiko ISAKA  Hideki IMAI  

     
    PAPER-Fundamental Theories

      Vol:
    E84-B No:1
      Page(s):
    1-9

    Channel coding for bandwidth limited channels based on multilevel bit-interleaved channels is discussed in this paper. This coding and decoding structure has the advantage of simplified design, and naturally incorporates flexible and powerful design of unequal error protection (UEP) capabilities, especially over time-varying channels to be often found in mobile radio communications. Multilevel coded modulation with multistage decoding, and bit-interleaved coded modulation are special cases of the proposed general framework. Simulation results verify the usefulness of the system considered.

  • Multilevel Coding with Adaptive Equalization and Interleaving for Fading Channel

    Toshiyuki SHOHON  Haruo OGIWARA  

     
    PAPER-Coded Modulation

      Vol:
    E79-A No:9
      Page(s):
    1379-1385

    In high-speed digital land mobile radio communication, communication quality is degraded by frequency selective fading that has intersymbol interference. It causes increase of bit error rate (BER). To decrease BER in the channel, this paper proposes a system with combined multilevel coding and adaptive equalization using interleaving. By using interleaving, the proposed system obtains time diversity effect. Furthermore the system realizes a type of decision feedback adaptive equalizer where signal after multilevel decoder is fed back. These features of the system cause decrease of BER. The proposed system is compared with a similar system with a feedback signal before multilevel decoder. The average bit error rate of the proposed system is less than 1/100 with that of the compared system at average Eb/No = 22 [dB] in a case of fading channel with one intersymbol interference.

  • Performance Analysis of Multilevel Coding Scheme for Rayleigh Fading Channel with Gaussian Noise

    Kazuyuki KANEDA  Haruo OGIWARA  

     
    PAPER-Coded Modulation

      Vol:
    E79-A No:9
      Page(s):
    1371-1378

    To evaluate the coding performance of a multilevel coding scheme for Rayleigh fading channel, a virtual automatic gain control and interleaving are applied to the scheme. The automatic gain control is assumed only for the theoretical evaluation of the performance. It is noted that the bit error-rate performance of the scheme for phase shift keying does not change whether the control is assumed or not. By the effect of the virtual automatic gain control and the interleaving, a fading channel with Gaussian noise is theoretically converted into an equivalent time-invariant channel with non-Gaussian noise. The probability density function of the converted non-Gaussian noise is derived. Then, the function is applied to a formula of the bit error-rate of the scheme for non-Gaussian noise. The formula is derived for phase shift keying by modifying that for pulse amplitude modulation. The coding performance for the non-Gaussian noise channel is evaluated by the formula, and the suitable coding with ideal interleaving is searched. As a result, the coding gain of 28 dB is obtained at the bit error-rate of 10-6 by using BCH code of length 31. This result is confirmed by a simulation for the fading channel. Then, the effectiveness of the formula for finite interleaving is evaluated. Finally, the usefulness of the formula, where the noise power is doubled, is shown for a case of a differential detection.