The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] multiple-access interference(9hit)

1-9hit
  • Minimum Kullback-Leibler-Based Turbo Multiuser Detector over Decomposition CDMA Signal

    Tuchsanai PLOYSUWAN  Sawat TANTIPHANWADI  Prasit TEEKAPUT  

     
    PAPER-DS-CDMA

      Vol:
    E91-A No:10
      Page(s):
    2963-2972

    In this paper, we develop a new iterative turbo multiuser detector for direct sequence code-division multiple access (DS-CDMA) systems over unknown frequency-selective channels by decomposing the observation signal into a number of signal components. Virtual trellis model representing the ISI channel for each separating signal user is designed to generate extrinsic probability in term of BCJR algorithm for exchange with a single channel decoder as priori information. Minimum kullback-leibler (MKL) framework is derived to calculate numerical channel estimation and extrinsic probability. In comparison with other similar receiver, simulation results demonstrate that the proposed solution achieves the desirable performance.

  • Multiple Access Interference Reduction Using Received Response Code Sequence for DS-CDMA UWB System

    Keat Beng TOH  Shin'ichi TACHIKAWA  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E91-A No:9
      Page(s):
    2646-2654

    This paper proposes a combination of novel Received Response (RR) sequence at the transmitter and a Matched Filter-RAKE (MF-RAKE) combining scheme receiver system for the Direct Sequence-Code Division Multiple Access Ultra Wideband (DS-CDMA UWB) multipath channel model. This paper also demonstrates the effectiveness of the RR sequence in Multiple Access Interference (MAI) reduction for the DS-CDMA UWB system. It suggests that by using conventional binary code sequence such as the M sequence or the Gold sequence, there is a possibility of generating extra MAI in the UWB system. Therefore, it is quite difficult to collect the energy efficiently although the RAKE reception method is applied at the receiver. The main purpose of the proposed system is to overcome the performance degradation for UWB transmission due to the occurrence of MAI during multiple accessing in the DS-CDMA UWB system. The proposed system improves the system performance by improving the RAKE reception performance using the RR sequence which can reduce the MAI effect significantly. Simulation results verify that significant improvement can be obtained by the proposed system in the UWB multipath channel models.

  • On Bit Error Probabilities of SSMA Communication Systems Using Spreading Sequences of Markov Chains

    Hiroshi FUJISAKI  Yosuke YAMADA  

     
    PAPER

      Vol:
    E88-A No:10
      Page(s):
    2669-2677

    We study asynchronous SSMA communication systems using binary spreading sequences of Markov chains and prove the CLT (central limit theorem) for the empirical distribution of the normalized MAI (multiple-access interference). We also prove that the distribution of the normalized MAI for asynchronous systems can never be Gaussian if chains are irreducible and aperiodic. Based on these results, we propose novel theoretical evaluations of bit error probabilities in such systems based on the CLT and compare these and conventional theoretical estimations based on the SGA (standard Gaussian approximation) with experimental results. Consequently we confirm that the proposed theoretical evaluations based on the CLT agree with the experimental results better than the theoretical evaluations based on the SGA. Accordingly, using the theoretical evaluations based on the CLT, we give the optimum spreading sequences of Markov chains in terms of bit error probabilities.

  • Adaptive Receivers for DS/CDMA Multiuser Communication in Multipath Fading Channels

    Fang-Biau UENG  Li-Der JENG  Jun-Da CHEN  Jia-Yu YANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:2
      Page(s):
    687-697

    In direct-sequence code division multiple access (DS/CDMA) multiuser communication systems with multipath channels, both intersymbol interference (ISI) and multiple-access interference (MAI) must be considered. The multipath effect usually changes the characteristics of the spreading codes. Modification of the conventional receiver structure is needed to account for the interference of the multipath fading. This paper proposes four adaptive receivers for such multiuser DS/CDMA systems in multipath fading channels. We employ least mean square (LMS) and recursive least squares (RLS) algorithms for both finite impulse response (FIR) and infinite impulse response (IIR) receiver structures. Mean square error (MSE) and convergence analysis are also given in this paper. Simulation results show the performance comparisons of the four proposed receivers.

  • A Generalized Performance Study of DS-CDMA Uplink/Downlink Receivers in Nakagami Wideband Fading Channel

    Mohammed ABDEL-HAFEZ  Fatih ALAGOZ  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E88-B No:1
      Page(s):
    333-344

    In this paper, we consider a mobile system consisting of a single isolated circular cell with K independent users simultaneously sharing the channel using binary DS-CDMA to establish a full duplex channel with the base station. Both coherent and differential detection RAKE receivers with Maximal Ratio Combining (MRC) techniques are considered. The performance of two uplink/downlink receivers in Nakagami wideband fading channel is studied. Our approach relies on the use of total instantaneous interference power calculations instead of the use of average power approximations. We analyzed and derived new exact formulae for bit error probabilities for the considered system, and presented a set of numerical results both for the exact formulae and Gaussian approximation. The performance comparisons suggest that the exact formulae provide superior performance to Gaussian approximation especially at low number of users and either high fading parameters of the desired user or low fading parameters of the MAIs.

  • Optical CDMA Spectral-Amplitude Codecs Capable of Reducing Multiple-Access and Optical Beat Interferences

    Jen-Fa HUANG  Yao-Tang CHANG  Song-Ming LIN  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E87-B No:11
      Page(s):
    3195-3202

    Spectral-amplitude coding (SAC) techniques in fiber-Bragg-grating (FBG)-based optical code-division multiple-access (OCDMA) systems were investigated in our previous work. This paper adopts the same network architecture to investigate the simultaneous reductions of multiple-access interference (MAI) and optical beat interference (OBI). The MAI is caused by overlapping wavelengths from undesired network coder/decoders (codecs) while the OBI is induced by interaction of simultaneous chips at adjacent gratings. It is proposed that MAI and OBI reductions may be obtained by use of: 1) a source spectrum that is divided into equal chip spacing; 2) coded FBGs characterized by approximately the same number of "0" and "1" code elements; and 3) spectrally balanced photo-detectors. With quasi-orthogonal Walsh-Hadamard coded FBGs, complementary spectral chips is employed as signal pairs to be recombined and detected in balanced photo-detectors, thus achieving simultaneous suppression of both MAIs and OBIs. Simulation results showed that the proposed OCDMA spectral-amplitude coding scheme achieves significant MAI and OBI reductions.

  • On the Code Synchronization of PPM/OPPM Fiber-Optic CDMA Systems

    Anh T. PHAM  Hiroyuki YASHIMA  

     
    PAPER

      Vol:
    E87-A No:10
      Page(s):
    2692-2701

    This paper proposes and theoretically evaluates two different schemes of code acquisition for pulse-position modulation (PPM) and overlapping PPM (OPPM) fiber-optic code-division multiple-access (CDMA) systems, namely threshold-based and demodulator-based code acquisition. Single-dwell detector and serial-search algorithm are employed for both schemes. Theoretical analysis is carried out for shot-noise-limited photon-counting receiver. Discussions upon effects of various parameter settings on the performance of code acquisition for PPM/OPPM fiber-optic CDMA systems, such as index of overlap, PPM/OPPM multiplicity, average photon counts per information nat, and darkcurrents, are presented. It is shown that when the threshold is properly selected, the threshold-based code acquisition system offers better performance, in terms of mean number of training frames, than the demodulator-based one.

  • Adaptive Algorithm Based on Pilot-Channel for MMSE Multiuser Detection in Downlink CDMA

    Yi WANG  Jun WU  Weiling WU  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E83-A No:11
      Page(s):
    2341-2347

    A novel adaptive algorithm based on pilot channel (PCA) for MMSE multiuser detection in downlink CDMA is proposed in this paper. This algorithm uses the information in pilot channel to compute the desired weight vector directly. Compared with conventional adaptive algorithms and blind algorithms, it does not require training sequences nor channel estimation. Analysis shows that the weight vector obtained by the PCA algorithm converges to the Wiener solution globally and its computational complexity is O(N2). Simulation results show that the PCA algorithm can adapt rapidly to the changing environment. The steady state performance can be enhanced by increasing the transmitted power in pilot channel, but is worse than that of conventional recursive least-square (RLS) algorithm in decision-directed mode. Also, performance of the adaptive MMSE detector is much better than that of conventional RAKE receiver.

  • Photonic CDMA Networking with Spectrally Pseudo-Orthogonal Coded Fiber Bragg Gratings

    Jen-Fa HUANG  Dar-Zu HSU  Yih-Fuh WANG  

     
    PAPER

      Vol:
    E83-B No:10
      Page(s):
    2331-2340

    An optical spectral coding scheme is devised for fiber-optic code-division multiple-access (FO-CDMA) networks. The spectral coding is based on the pseudo-orthogonality of FO-CDMA codes properly written in the fiber Bragg grating (FBG) devices. For an incoming broadband optical signal having spectral components equal to the designed Bragg wavelengths of the FBG, the spectral components will be reflected and spectrally coded with the written FO-CDMA address codes. Each spectral chip has different central wavelength and is distributed over the spectrum of the incoming light source. Maximal-length sequence codes (m-sequence codes) are chosen as the signature or address codes to exemplify the coding and correlation processes in the FO-CDMA system. By assigning the N cycle shifts of a single m-sequence code to N users, we get an FO-CDMA network that can theoretically support N simultaneous users. To overcome the limiting factor of multiple-access interference (MAI) on the performance of the FO-CDMA network, an FBG decoder is configured on the basis of orthogonal correlation functions of the adopted pseudo-orthogonal codes. An intended receiver user that operates on the defined orthogonal correlation functions will reject any interfering user and obtain quasi-orthogonality between the FO-CDMA users in the network. Practical limiting issues on networking performance, such as non-flattened source spectra, optical path delay, and asynchronous data accesses, are evaluated in terms of the bit-error-rate versus the number of active users. As expected, the bit-error-rate will increase with the number of active users. Increasing the flatness parameter of optical signal will lead to a lower average error probability, since we are working in a part of the more flattened optical spectrum. In contrast, reducing the encoded bandwidth will reduce the total received power, and this will necessitate higher resolution of fiber Bragg gratings.