The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] multirate control(2hit)

1-2hit
  • Perfect Tracking Control of Nonminimum Phase Systems in Magnetic Levitation System

    Feng LI  Jianming LU  Xueqin ZHAO  Takashi YAHAGI  

     
    PAPER-Systems and Control

      Vol:
    E89-A No:5
      Page(s):
    1437-1445

    In this paper, we study the problem of perfect tracking control of nonminimum phase systems in magnetic levitation system. Generally, perfect tracking control schemes cannot be applied to nonminimum phase plants because of unstable pole-zero cancellations. Although the method of state matching using multirate feedforward control to realize perfect tracking control have been proposed, the oscillation restraint and the feasibility in nonminimum phase system cannot be satisfied at same time. We propose a method using the difference of state variables to generate a smooth desired state variable trajectory in the discrete-time systems. The techniques we proposed are applicable to nonminimum phase discrete-time systems and the oscillations between the sampling points are well restrained. We will show that the structure of the proposed perfect tracking controller is very simple and clear. Finally, computer simulations and experiment results based on magnetic levitation apparatus are presented.

  • An Effective Data Transfer Method for IEEE 802.11 Wireless LANs

    Kazuyoshi SAITOH  Yasuhiko INOUE  Tomoaki KUMAGAI  Masataka IIZUKA  Satoru AIKAWA  Masahiro MORIKURA  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E88-B No:3
      Page(s):
    1266-1270

    This paper proposes a new effective data transfer method for IEEE 802.11 wireless LANs by integrating priority control and multirate mechanism. The IEEE 802.11 PHY layer supports a multirate mechanism with dynamic rate switching and an appropriate data rate is selected in transmitting a frame. However, the multirate mechanism is used with the CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) protocol, low rate transmissions need much longer time than high rate transmissions to finish sending a frame. As a result, the system capacity is decreased. The proposed method assumes the same number of priority levels as the data rates, and a data rate is associated to a priority level. Priority of a transmission goes up with the used data rate. For this purpose, we have modified the CSMA/CA protocol to support prioritized transmission. By selecting the appropriate priority depending on the data rate and giving more transmission opportunities for high rate transmission, the system capacity is increased. The effect of the proposed mechanism is confirmed by computer simulations.