The search functionality is under construction.

Keyword Search Result

[Keyword] near-field to far-field transformation(2hit)

1-2hit
  • Near-Field to Far-Field Transformation for an Outdoor RCS Range

    Yoshio INASAWA  Shinji KURODA  Ken-ichi KAKIZAKI  Hitoshi NISHIKAWA  Naofumi YONEDA  Shigeru MAKINO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E91-C No:9
      Page(s):
    1463-1471

    This paper presents the near-field to far-field transformation for an outdoor radar cross section (RCS) range. Direct measurement of the large actual target requires quite a long measurement range. The near-field to far-field RCS transformation method achieves the reduction of measurement range. However the non-uniformity of the incident electric field distribution on the target causes some errors in RCS prediction. We propose a novel near-field to far-field RCS transformation method that can be applied to an outdoor RCS measurement. The non-uniformity of the incident electric field distribution is successfully resolved by introducing the correction term of the ground bounce. We investigate the validity of the proposed method by the simulation and measurement.

  • RCS Prediction Method from One-Dimensional Intensity Data in Near-Field

    Yoshio INASAWA  Hiroaki MIYASHITA  Yoshihiko KONISHI  

     
    LETTER-Electromagnetic Theory

      Vol:
    E91-C No:7
      Page(s):
    1167-1170

    Radar Cross Section (RCS) can be obtained from near-field data by using near-field to far-field RCS transformation methods. Phase errors in near-field data cause the degradation of the prediction accuracy. In order to overcome the difficulty, we propose the far-field RCS prediction method from one-dimensional intensity data in near-field. The proposed method is derived by extending the phase retrieval method based on the Gerchberg-Saxton algorithm with the use of the relational expression between near-fields and scattering coefficients. The far-field RCS can be predicted from the intensity data of scattered fields measured at two different ranges. The far-field RCS predicted by the proposed method approximately coincides with the computed one. The proposed method also has significant advantages of simple and efficient algorithm. The proposed method is valuable from a practical point of view.