The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] network analyzer(2hit)

1-2hit
  • A New Calibration Algorithm Using Reference Materials for the Waveguide-Penetration Method

    Alfred KIK  Atsuhiro NISHIKATA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E94-B No:9
      Page(s):
    2549-2557

    The waveguide-penetration method is a method to measure the electrical properties of materials. In this method, a cylindrical object pierces a rectangular waveguide through a pair of holes at the centre of its broad walls. Then, the complex permittivity and permeability of the object are estimated from measured S-parameters after TRL calibration. This paper proposes a new calibration algorithm for the waveguide-penetration method. Reference materials with known electrical properties are fabricated in cylindrical shapes to fit into the holes in the waveguide and are used as calibration standards. The algorithm is formulated using the property of equal traces in similar matrices, and we show that at least two reference materials are needed to calibrate the system. The proposed algorithm yields a simpler means of calibration compared to TRL and is verified using measurements in the S-band. Also, the error sensitivity coefficients are derived. These coefficients give valuable information for the selection of reference materials.

  • Single Probe Method with Vector Detection for Measuring Microwave Reflection Coefficient

    Takashi IWASAKI  Makoto TAKASHIMA  

     
    PAPER-General Methods, Materials, and Passive Circuits

      Vol:
    E87-C No:5
      Page(s):
    665-671

    A novel method for measuring microwave reflection coefficients without the open and load standards is proposed. In this method, a single probe is inserted into an air line and the output wave is detected by a vector detector. Offset shorts are used for the calibration. The measurement system is constructed using 7 mm coaxial line and APC7 connectors. The result of the measurement in the frequency range 1-9 GHz shows the possibility of the proposed method. All the major systematic errors can be estimated from the data that is easily obtainable.