1-6hit |
Qing-dao-er-ji REN Yuan LI Shi BAO Yong-chao LIU Xiu-hong CHEN
As the mainstream approach in the field of machine translation, neural machine translation (NMT) has achieved great improvements on many rich-source languages, but performance of NMT for low-resource languages ae not very good yet. This paper uses data enhancement technology to construct Mongolian-Chinese pseudo parallel corpus, so as to improve the translation ability of Mongolian-Chinese translation model. Experiments show that the above methods can improve the translation ability of the translation model. Finally, a translation model trained with large-scale pseudo parallel corpus and integrated with soft context data enhancement technology is obtained, and its BLEU value is 39.3.
Guoyi MIAO Yufeng CHEN Mingtong LIU Jinan XU Yujie ZHANG Wenhe FENG
Translation of long and complex sentence has always been a challenge for machine translation. In recent years, neural machine translation (NMT) has achieved substantial progress in modeling the semantic connection between words in a sentence, but it is still insufficient in capturing discourse structure information between clauses within complex sentences, which often leads to poor discourse coherence when translating long and complex sentences. On the other hand, the hypotactic structure, a main component of the discourse structure, plays an important role in the coherence of discourse translation, but it is not specifically studied. To tackle this problem, we propose a novel Chinese-English NMT approach that incorporates the hypotactic structure knowledge of complex sentences. Specifically, we first annotate and build a hypotactic structure aligned parallel corpus to provide explicit hypotactic structure knowledge of complex sentences for NMT. Then we propose three hypotactic structure-aware NMT models with three different fusion strategies, including source-side fusion, target-side fusion, and both-side fusion, to integrate the annotated structure knowledge into NMT. Experimental results on WMT17, WMT18 and WMT19 Chinese-English translation tasks demonstrate that the proposed method can significantly improve the translation performance and enhance the discourse coherence of machine translation.
Shu JIANG Rui WANG Zuchao LI Masao UTIYAMA Kehai CHEN Eiichiro SUMITA Hai ZHAO Bao-liang LU
Standard neural machine translation (NMT) is on the assumption that the document-level context is independent. Most existing document-level NMT approaches are satisfied with a smattering sense of global document-level information, while this work focuses on exploiting detailed document-level context in terms of a memory network. The capacity of the memory network that detecting the most relevant part of the current sentence from memory renders a natural solution to model the rich document-level context. In this work, the proposed document-aware memory network is implemented to enhance the Transformer NMT baseline. Experiments on several tasks show that the proposed method significantly improves the NMT performance over strong Transformer baselines and other related studies.
Van-Hai VU Quang-Phuoc NGUYEN Kiem-Hieu NGUYEN Joon-Choul SHIN Cheol-Young OCK
Since deep learning was introduced, a series of achievements has been published in the field of automatic machine translation (MT). However, Korean-Vietnamese MT systems face many challenges because of a lack of data, multiple meanings of individual words, and grammatical diversity that depends on context. Therefore, the quality of Korean-Vietnamese MT systems is still sub-optimal. This paper discusses a method for applying Named Entity Recognition (NER) and Part-of-Speech (POS) tagging to Vietnamese sentences to improve the performance of Korean-Vietnamese MT systems. In terms of implementation, we used a tool to tag NER and POS in Vietnamese sentences. In addition, we had access to a Korean-Vietnamese parallel corpus with more than 450K paired sentences from our previous research paper. The experimental results indicate that tagging NER and POS in Vietnamese sentences can improve the quality of Korean-Vietnamese Neural MT (NMT) in terms of the Bi-Lingual Evaluation Understudy (BLEU) and Translation Error Rate (TER) score. On average, our MT system improved by 1.21 BLEU points or 2.33 TER scores after applying both NER and POS tagging to the Vietnamese corpus. Due to the structural features of language, the MT systems in the Korean to Vietnamese direction always give better BLEU and TER results than translation machines in the reverse direction.
Johanes EFFENDI Sakriani SAKTI Katsuhito SUDOH Satoshi NAKAMURA
Since a concept can be represented by different vocabularies, styles, and levels of detail, a translation task resembles a many-to-many mapping task from a distribution of sentences in the source language into a distribution of sentences in the target language. This viewpoint, however, is not fully implemented in current neural machine translation (NMT), which is one-to-one sentence mapping. In this study, we represent the distribution itself as multiple paraphrase sentences, which will enrich the model context understanding and trigger it to produce numerous hypotheses. We use a visually grounded paraphrase (VGP), which uses images as a constraint of the concept in paraphrasing, to guarantee that the created paraphrases are within the intended distribution. In this way, our method can also be considered as incorporating image information into NMT without using the image itself. We implement this idea by crowdsourcing a paraphrasing corpus that realizes VGP and construct neural paraphrasing that behaves as expert models in a NMT. Our experimental results reveal that our proposed VGP augmentation strategies showed improvement against a vanilla NMT baseline.
Mingming YANG Min ZHANG Kehai CHEN Rui WANG Tiejun ZHAO
Attention mechanism, which selectively focuses on source-side information to learn a context vector for generating target words, has been shown to be an effective method for neural machine translation (NMT). In fact, generating target words depends on not only the source-side information but also the target-side information. Although the vanilla NMT can acquire target-side information implicitly by recurrent neural networks (RNN), RNN cannot adequately capture the global relationship between target-side words. To solve this problem, this paper proposes a novel target-attention approach to capture this information, thus enhancing target word predictions in NMT. Specifically, we propose three variants of target-attention model to directly obtain the global relationship among target words: 1) a forward target-attention model that uses a target attention mechanism to incorporate previous historical target words into the prediction of the current target word; 2) a reverse target-attention model that adopts a reverse RNN model to obtain the entire reverse target words information, and then to combine with source context information to generate target sequence; 3) a bidirectional target-attention model that combines the forward target-attention model and reverse target-attention model together, which can make full use of target words to further improve the performance of NMT. Our methods can be integrated into both RNN based NMT and self-attention based NMT, and help NMT get global target-side information to improve translation performance. Experiments on the NIST Chinese-to-English and the WMT English-to-German translation tasks show that the proposed models achieve significant improvements over state-of-the-art baselines.