The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] on-line error correction(2hit)

1-2hit
  • Reliable Data Routing for Spatial-Temporal TMR Multiprocessor Systems

    Mineo KANEKO  

     
    PAPER-Fault Tolerance

      Vol:
    E84-D No:12
      Page(s):
    1790-1800

    This paper treats the data routing problem for fault-tolerant systolic arrays based on Triple Modular Redundancy (TMR) in mixed spatial-temporal domain. The number of logical links required in TMR systolic array is basically 9 times larger than the one for corresponding non-fault-tolerant systolic array. The link sharing is a promising method for reducing the number of physical links, which may, however, degrade the fault tolerance of TMR system. This paper proposes several robust data-routing and resource-sharing (plural data transfers share a physical link, or a data transfer and a computational task share a PE as a relay node for the former and as a processor for the latter), by which certain classes of fault tolerant property will be guaranteed. A stage and a dominated set are introduced to characterize the features of routing/resource-sharing in TMR systems, and conditions on the dominated set and their resultant fault-tolerant properties are derived.

  • Fault Tolerant Non-regular Digital Signal Processing Based on Computation Tree Block Decomposition

    Mineo KANEKO  Hiroyuki MIYAUCHI  

     
    PAPER-Digital Signal Processing

      Vol:
    E77-A No:9
      Page(s):
    1535-1545

    In this paper, we present Branching Oriented System Equation based on-line error correction scheme for recursive digital signal processing. The target digital signal processing is linear and time-invariant, and the algorithm includes multiplications with constant coefficient, additions and delays. The difficulties of the algorithm-level fault tolerance for such algorithm without structural regularity include error distribution problem and right timing of error correction. To escape the error distribution problem, multiple fan-out nodes in an algorithm are specified as the nodes at which error corrections are performed. The Branching Oriented Graph and Branching Oriented System Equation are so introduced to formulate on-line correction schemes based on this strategy. The Branching Oriented Graph is treated as the collection of computation sub-blocks. Applying checksum code independently to each sub-block is our most trivial on-line error correction scheme, and it results in, with appropriate selection of error identification process, TMR in sub-block level. One of the advantages of our method is in the reduction of redundant operations performed by merging some computation sub-blocks. On the other hand, the schedulability of the system is an important issue for our method since our on-line error correction mechanism induces additional data dependencies. In this paper, the schedulability condition and some modifications on the scheme are also discussed.