The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ontology learning(2hit)

1-2hit
  • Specificity-Aware Ontology Generation for Improving Web Service Clustering

    Rupasingha A. H. M. RUPASINGHA  Incheon PAIK  Banage T. G. S. KUMARA  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2018/05/18
      Vol:
    E101-D No:8
      Page(s):
    2035-2043

    With the expansion of the Internet, the number of available Web services has increased. Web service clustering to identify functionally similar clusters has become a major approach to the efficient discovery of suitable Web services. In this study, we propose a Web service clustering approach that uses novel ontology learning and a similarity calculation method based on the specificity of an ontology in a domain with respect to information theory. Instead of using traditional methods, we generate the ontology using a novel method that considers the specificity and similarity of terms. The specificity of a term describes the amount of domain-specific information contained in that term. Although general terms contain little domain-specific information, specific terms may contain much more domain-related information. The generated ontology is used in the similarity calculations. New logic-based filters are introduced for the similarity-calculation procedure. If similarity calculations using the specified filters fail, then information-retrieval-based methods are applied to the similarity calculations. Finally, an agglomerative clustering algorithm, based on the calculated similarity values, is used for the clustering. We achieved highly efficient and accurate results with this clustering approach, as measured by improved average precision, recall, F-measure, purity and entropy values. According to the results, specificity of terms plays a major role when classifying domain information. Our novel ontology-based clustering approach outperforms comparable existing approaches that do not consider the specificity of terms.

  • Integrating Ontologies Using Ontology Learning Approach

    Lihua ZHAO  Ryutaro ICHISE  

     
    PAPER-Data Engineering, Web Information Systems

      Vol:
    E96-D No:1
      Page(s):
    40-50

    The Linking Open Data (LOD) cloud is a collection of linked Resource Description Framework (RDF) data with over 31 billion RDF triples. Accessing linked data is a challenging task because each data set in the LOD cloud has a specific ontology schema, and familiarity with the ontology schema used is required in order to query various linked data sets. However, manually checking each data set is time-consuming, especially when many data sets from various domains are used. This difficulty can be overcome without user interaction by using an automatic method that integrates different ontology schema. In this paper, we propose a Mid-Ontology learning approach that can automatically construct a simple ontology, linking related ontology predicates (class or property) in different data sets. Our Mid-Ontology learning approach consists of three main phases: data collection, predicate grouping, and Mid-Ontology construction. Experiments show that our Mid-Ontology learning approach successfully integrates diverse ontology schema with a high quality, and effectively retrieves related information with the constructed Mid-Ontology.