The search functionality is under construction.

Author Search Result

[Author] Lihua ZHAO(2hit)

1-2hit
  • Ontology-Based Driving Decision Making: A Feasibility Study at Uncontrolled Intersections

    Lihua ZHAO  Ryutaro ICHISE  Zheng LIU  Seiichi MITA  Yutaka SASAKI  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/04/05
      Vol:
    E100-D No:7
      Page(s):
    1425-1439

    This paper presents an ontology-based driving decision making system, which can promptly make safety decisions in real-world driving. Analyzing sensor data for improving autonomous driving safety has become one of the most promising issues in the autonomous vehicles research field. However, representing the sensor data in a machine understandable format for further knowledge processing still remains a challenging problem. In this paper, we introduce ontologies designed for autonomous vehicles and ontology-based knowledge base, which are used for representing knowledge of maps, driving paths, and perceived driving environments. Advanced Driver Assistance Systems (ADAS) are developed to improve safety of autonomous vehicles by accessing to the ontology-based knowledge base. The ontologies can be reused and extended for constructing knowledge base for autonomous vehicles as well as for implementing different types of ADAS such as decision making system.

  • Integrating Ontologies Using Ontology Learning Approach

    Lihua ZHAO  Ryutaro ICHISE  

     
    PAPER-Data Engineering, Web Information Systems

      Vol:
    E96-D No:1
      Page(s):
    40-50

    The Linking Open Data (LOD) cloud is a collection of linked Resource Description Framework (RDF) data with over 31 billion RDF triples. Accessing linked data is a challenging task because each data set in the LOD cloud has a specific ontology schema, and familiarity with the ontology schema used is required in order to query various linked data sets. However, manually checking each data set is time-consuming, especially when many data sets from various domains are used. This difficulty can be overcome without user interaction by using an automatic method that integrates different ontology schema. In this paper, we propose a Mid-Ontology learning approach that can automatically construct a simple ontology, linking related ontology predicates (class or property) in different data sets. Our Mid-Ontology learning approach consists of three main phases: data collection, predicate grouping, and Mid-Ontology construction. Experiments show that our Mid-Ontology learning approach successfully integrates diverse ontology schema with a high quality, and effectively retrieves related information with the constructed Mid-Ontology.